• Title/Summary/Keyword: Synthetic aperture radar (SAR)

Search Result 506, Processing Time 0.031 seconds

Evaluation of SAR Image Quality

  • Lee Young-ran;Kim Kwang Young;Kwak Sunghee;Shin Dongseok;Jeong Soo;Kim Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.397-400
    • /
    • 2004
  • Synthetic Aperture Radar(SAR) is an active micro­wave instrument that performs high-resolution observation under almost all weather conditions. Although there are many advantages of SAR instrument, many complicated steps are involved in order to generate SAR image products. Many research and algorithms have been proposed to process radar signal and to increase the quality of SAR products. However, it is hard to find research which compare the quality of SAR products generated with different algorithms and processing methods. In our previous research, a SAR processing s/w was developed for a ground station. In addition, quality assessment procedures and their test parameters inside a SAR processor was proposed. The purpose of this paper is to evaluate the quality of SAR images generated from the developed SAR processing s/w. However, If there are no direct measurements such as radar reflector or scattering field measurement values it is difficult to compare SAR images generated with different methods. An alternative procedures and parameters for SAR image quality evaluation are presented and the problems involved in the comparison methods are discussed. Experiments based on real data have been conducted to evaluate and analyze quality of SAR images.

  • PDF

Performance Analysis in Wide Swath Mode on a Spaceborne SAR System (위성탑재 영상레이다(SAR)의 광역감시 모드에 대한 체계 성능 분석)

  • 이범석
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.104-123
    • /
    • 2001
  • Synthetic Aperture Radar(SAR) can provide radar imagery in all weather, day and night situations. Recently SAR system consisted of several imaging modes, has been used for not only military purpose, but also commercial and scientific applications. This paper firstly reviews spaceborne SAR theory, specially scansar principle, and secondly the theories and the design procedures of system performance analysis in the scansar mode, which are different from the ones in the conventional stripmap mode. Based on the SAR-related knowledge, it lastly derives the results of performance analysis in wide swath mode using the scansar technique at the design phase. It shows that these results can meet the system requirements as given the customer. In future, they will continuously be updated using the real measurement data, in connection with the development of a spaceborne SAR system.

  • PDF

Performance Analysis of Deep Learning-Based Detection/Classification for SAR Ground Targets with the Synthetic Dataset (합성 데이터를 이용한 SAR 지상표적의 딥러닝 탐지/분류 성능분석)

  • Ji-Hoon Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Based on the recently developed deep learning technology, many studies have been conducted on deep learning networks that simultaneously detect and classify targets of interest in synthetic aperture radar(SAR) images. Although numerous research results have been derived mainly with the open SAR ship datasets, there is a lack of work carried out on the deep learning network aimed at detecting and classifying SAR ground targets and trained with the synthetic dataset generated from electromagnetic scattering simulations. In this respect, this paper presents the deep learning network trained with the synthetic dataset and applies it to detecting and classifying real SAR ground targets. With experiment results, this paper also analyzes the network performance according to the composition ratio between the real measured data and the synthetic data involved in network training. Finally, the summary and limitations are discussed to give information on the future research direction.

Estimation of spatiotemporal soil moisture distribution for Yongdam-dam watershed using Sentinel-1 C-band Synthetic Aperture Radar images (Sentinel-1 C-band SAR 영상을 이용한 용담댐 유역의 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.162-162
    • /
    • 2020
  • 토양수분은 TDR(Time Domain Reflectometry)이나 Tensiometer 등의 장비를 이용하여 측정을 시행하고 있으나, 이를 위해서는 많은 인력과 경제적 자원이 소비될 뿐만 아니라 시공간적으로 측정할 수 있는 범위에 한계가 있다. 지상 관측의 대안으로 MIRAS(Microwave Imaging Radiometer with Aperture Synthesis)나 SMAP(Soil Moisture Active Passive), AMSR2(Advanced Microwave Scanning Radiometer 2) 등의 수동 마이크로파 위성 센서를 이용한 공간 토양수분 관측이 수행되었으나, 낮은 공간 해상도(9~36km)는 지역 규모의 토양수분 분포를 나타내기 충분하지 않고, 높은 불확실성을 내포하고 있다. 본 연구에서는 금강 상류의 용담댐 유역(930.0㎢)을 대상으로 Sentinel-1 C-band SAR(Synthetic Aperture Radar) 영상을 이용한 토지 피복 및 토양 속성을 고려한 10m 해상도의 토양수분 산출을 수행하였다. 용담댐 유역은 산림 79.7%, 논 9.0%, 밭 5.4%, 주거지 2.9%의 토지 피복 비율을 가지며 토양은 사양토(66.6%)와 양토(20.9%)가 우세하다. Sentinel-1 C-band SAR 영상은 SeNtinel Application Platform(SNAP)을 이용하여 전처리 후, 후방산란계수로 변환하였다. 토양수분 알고리즘은 TU-Wien change detection algorithm과 Regression model을 활용하였고, 검증을 위한 실측 토양수분 자료는 한국수자원공사(K-water)에서 제공하는 5년(2014~2018)간의 토양수분 관측자료를 이용하였다. 산출된 토양수분은 결정계수(Coefficient of determination, R2) 및 평균제곱근오차(Root Mean Square Error, RMSE)를 이용하여 실측 토양수분과 비교하였다. Sentinel-1 C-band SAR 영상을 이용한 고해상도의 토양수분 산출은 토지 피복 및 토양 속성을 고려한 지역 규모의 공간 토양수분 분포 및 시간적 변화를 표현 가능할 것으로 판단된다.

  • PDF

A Development of DDS Based Chirp Signal Generator and X-Band Transmitter-Receiver for Small SAR Sensor (DDS 기반의 소형 SAR 시스템 송수신장비 개발)

  • Song, Kyoung-Min;Lee, Ki-Woong;Lee, Chang-Hyun;Lee, Woo-Kyung;Lee, Myeong-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.326-329
    • /
    • 2016
  • UAVs(Unmanned Aerial Vehicle) can be used in variant fields fornot only combat, but also recon, observation and exploration. Moreover, UAVs capacity can be expanded to impossible missions for existing surveillance system such as SAR(Synthetic Aperture Radar) technology that collecting images from all weather conditions. In recent days, with development of highly efficient IC and lightened system technology, there are significant increase of researches and demands to make SAR sensor as a payload of UAV. Therefore, this paper contains development process and results of small signal generator and RF device as a core module of SAR system based on the digital device of DDS.

Full Polarimetric SAR Decomposition Analysis of Landslide-affected Areas in Mocoa, Colombia

  • Jeon, Hyeong-Joo;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.365-374
    • /
    • 2017
  • SAR (Synthetic Aperture Radar) is an effective tool for monitoring areas damaged by disasters. Full PolSAR (Polarimetric SAR) enhances SAR's capabilities by providing specific scattering mechanisms. Thus, full PolSAR data have been widely used to analyze the situation when disasters occur. To interpret full PolSAR data, model-based decomposition methods are frequently used due to its easy physical interpretation of PolSAR data and computational efficiency. However, these methods present problems. One of the key problems is the overestimation of the volume scattering component. To minimize the volume scattering component, the OA (Orientation Angle) compensation method is widely utilized. This paper shows that the effect of the OA compensation was analyzed over landslide affected areas. In this paper, the OA compensation is applied by using the OA estimated from the maximum relative Hellinger distance. We conducted an experiment using two full polarimetric ALOS/PALSAR (Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar)-2 data collected over Mocoa, Colombia which was seriously damaged by the 2017 Mocoa landslide. After OA compensation, the experimental results showed volume scattering power decreased, while the double-bounce and surface scattering power increased. Particularly, significant changes were noted in urban areas. In addition, after OA compensation, the separability of the double-bounce and surface scattering components are improved over the damaged building areas. Furthermore, changes in the OA can discriminate visually between the damaged building areas and undamaged areas. In conclusion, we demonstrated that the effect of OA compensation improved the influence of the double-bounce and surface scattering components, and OA changes can be useful for detecting damaged building areas.

Configuration design of a deployable SAR antenna for space application and tool-kit development (위성용 전개형 SAR 안테나 형상 설계 및 툴킷 개발)

  • Jeong, Suk-Yong;Lee, Seung-Yup;Bae, Min-Ji;Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.683-691
    • /
    • 2014
  • Significance of SAR(Synthetic Aperture Radar) satellite regadless of weather have grown for Earth observation. According to the cost-effective trend in satellite development, SAR antenna is actively studied. It's a competitive candidate to use deployable SAR antenna out of CFRP. In this study, variables for an antenna configuration model was researched and evaluated. The design of the antenna was structurally analyzed by FEM(Finite Element Model). Tool-kit was developed for modifying the SAR antenna model easily in accordance with system requirement change. In the tool-kit, antenna configuration design and error analysis of the antenna surface could be achieved. And compatibility of tool-kit results to CST, a RF analysis program, was confirmed.

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • Lee, In-Su;Chang, Hsing-Chung;Ge, Linlin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.63-69
    • /
    • 2005
  • Interferometric Synthetic Aperture Radar(InSAR) is a rapidly evolving technique. Spectacular results obtained in various fields such as the monitoring of earthquakes, volcanoes, land subsidence and glacier dynamics, as well as in the construction of Digital Elevation Models(DEMs) of the Earth's surface and the classification of different land types have demonstrated its strength. As InSAR is a remote sensing technique, it has various sources of errors due to the satellite positions and attitude, atmosphere, and others. Therefore, it is important to validate its accuracy, especially for the DEM derived from Satellite SAR images. In this study, Real Time Kinematic(RTK) GPS and Kinematic GPS positioning were chosen as tools for the validation of InSAR derived DEM. The results showed that Kinematic GPS positioning had greater coverage of test area in terms of the number of measurements than RTK GPS. But tracking the satellites near and/or under trees md transmitting data between reference and rover receivers are still pending tasks in GPS techniques.

  • PDF

A Dataset of Ground Vehicle Targets from Satellite SAR Images and Its Application to Detection and Instance Segmentation (위성 SAR 영상의 지상차량 표적 데이터 셋 및 탐지와 객체분할로의 적용)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.30-44
    • /
    • 2022
  • The advent of deep learning-based algorithms has facilitated researches on target detection from synthetic aperture radar(SAR) imagery. While most of them concentrate on detection tasks for ships with open SAR ship datasets and for aircraft from SAR scenes of airports, there is relatively scarce researches on the detection of SAR ground vehicle targets where several adverse factors such as high false alarm rates, low signal-to-clutter ratios, and multiple targets in close proximity are predicted to degrade the performances. In this paper, a dataset of ground vehicle targets acquired from TerraSAR-X(TSX) satellite SAR images is presented. Then, both detection and instance segmentation are simultaneously carried out on this dataset based on the deep learning-based Mask R-CNN. Finally, this paper shows the future research directions to further improve the performances of detecting the SAR ground vehicle targets.

Development of Digital Chirp Pulse Generator for Fine Resolution Image Radar (고해상도 레이더용 광대역 디지털 첩 펄스 발생기 실험모델 개발)

  • 강경인;임종태;신희섭;전재한
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.104-108
    • /
    • 2006
  • There are range and azimuth direction resolution of synthetic aperture radar on the aircraft or satellite. Wide bandwidth chirp pulse generation technology is prerequisite for SAR image with fine resolution. There are two kinds of digital chirp pulse generation technology as arbitrary waveform generator(AWG) and direct digital synthesizer(DDS). In this paper, we design and implement a digital chirp pulse generator to generate 300MHz wide bandwidth linear FM chirp pulse for the fine resolution image with direct digital synthesizer. Implemented chirp pulse generator can be useful for the SAR sensors to make 50cm range resolution image.