• Title/Summary/Keyword: Synthetic aperture radar (SAR)

Search Result 506, Processing Time 0.032 seconds

Effects of Speckle Filtering on Synthetic Aperture Radar (SAR) Imagery (레이더 영상자료의 Speckle 필터링 효과)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.155-168
    • /
    • 1996
  • Speckle noise has been a primary concern to many applications of synthetic aperture radar (SAR) imagery. In recent years, several satellites with radar imaging systems were launched and the use of SAR data are expected to be increased rapidly The objectives of this study are to provide introductory understanding on radar speckle filtering and to compare the effects of several filtering methods that are relatively unknown to user community. Two study sites were extracted from the RADARSAT SAR data obtained over the suburban areas near Seoul. The study sites include relatively homogeneous cover types, such as reservoir, parking lot, rice pad, and deciduous forest. Five filters (mean filter, median filter, sigma filter, local statistics filter, and autocorrelation filter) were applied to the SAR imagery and their effects were evaluated from the aspects of both image smoothing and edge preservation. In overall, the evaluation results indicate that the local statistics filter and autocorrelation filter, that are based on a speckle model, are more effective to suppress speckle within homogeneous cover type while maintaining the edge sharpness between cover types.

SAR 영상의 활용

  • Lee, Hun-Yeol
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.55-67
    • /
    • 2011
  • 이 논문에서는 Asia-Pacific International Conference on Synthetic Aperture Radar(APSAR) 2011의 성공적인 한국 개최를 기념하여 SAR의 다채로운 활용 분야에 대한 동향을 간략하게 소개하고자 한다. SAR의 활용 분야에 따라 육상, 해양, 극지, 대기 분야로 나누었고, 각 분야별로 활용 기술과 주요 쟁점에 대하여 세분하여 개략적인 설명을 덧붙였다. SAR는 향후 새로운 기술과 시스템의 출현으로 그 활용 분야를 지속적으로 넓혀갈 것으로 예상된다. 이 논문을 통해 SAR의 다양한 활용 분야에 대한 이해를 돕고, 향후 국내 SAR 기술개발 및 활용에 있어서 도움이 되었으면 한다.

Overview of NASA/JPL AIRSAR PACRIM2 Program (미국 NASA/JPL AIRSAR PACRIM 2 개요)

  • Suh, Ae-Sook;Song, Byung-Hyun;Kim, Kum-Lan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.87-97
    • /
    • 2000
  • Recently microwave remote sensing technology is widely used in Global environment study. Expecially Synthetic Aperture Radar sensing technique has many application to geographic information. Proposed AIRSAR Pacific Rim Deployment 2000(PACRIM2) is a NASA-sponsored science mission. AIRSAR is a test-bed instrument for new radar technologies in near future from space shuttle and satellite systems. In this paper the overview of PACRIM2 overview and sensors are introduced. Examples of processed data from new sensors are also shown.

  • PDF

Estimation of Rice Growth Using RADARSTA-2 SAR Images at Seosan Region

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Jang, Soyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.237-244
    • /
    • 2013
  • Radar remote sensing is appropriate for monitoring rice because the areas where this crop is cultivated are often cloudy and rainy. Especially, Synthetic Aperture Radar (SAR) can acquire remote sensing information with a high temporal resolution in tropical and subtropical regions due to its all-weather capability. This paper analyzes the relationships between backscattering coefficients of rice measured by RADARSAT-2 SAR and growth parameters during a rice growth period. We examined the temporal variations of backscattering coefficients with full polarization. Backscattering coefficients for all polarizations increased until Day Of Year (DOY 222) and then decreased along with Leaf Area Index (LAI), fresh weight, and Vegetation Water Content (VWC). Vertical transmit and Vertical receive polarization (VV)-polarization backscattering coefficients were higher than Horizontal transmit and Horizontal receive polarization (HH)-polarization backscattering coefficients in early rice growth stage and HH-polarization backscattering coefficients were higher than VV-polarization backscattering coefficients after effective tillering stage (DOY 186). Correlation analysis between backscattering coefficients and rice growth parameters revealed that HH-polarization was highly correlated with LAI, fresh weight, and VWC. Based on the observed relationships between backscattering coefficients and variables of cultivation, prediction equations were developed using the HH-polarization backscattering coefficients.

Optimum Design of an SAR Satellite Constellation Considering the Revisit Time Using a Genetic Algorithm

  • Kim, Yunjoong;Kim, Mingu;Han, Bumku;Kim, Youdan;Shin, Hohyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.334-343
    • /
    • 2017
  • The optimum design of an SAR (Synthetic Aperture Radar) satellite constellation is developed herein using a genetic algorithm. The performance of Earth observations using a satellite constellation can be improved by minimizing the maximum revisit time. Classical orbit design using analytic methods has limitations when addressing orbit dynamics due to various disturbances. To overcome this issue, an optimization technique based on a genetic algorithm is used. STK (Systems Tool Kit) is utilized to propagate the satellite orbit when considering external disturbances, and the maximum revisit time on the earth observation area is calculated. By minimizing the performance index using a genetic algorithm, the optimum orbit of the satellite constellation is designed. Numerical results are provided to demonstrate the performance of the proposed method.

Comparison of Detection Probability for Conventional and Time-Reversal (TR) Radar Systems

  • Yoo, Hyung-Ha;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.70-76
    • /
    • 2012
  • We compare the detection probabilities of the time-reversal(TR) detection system and the conventional radar system. The target is assumed to be hidden inside a random medium such as a forest. We propose a TR detection system based on the SAR(Synthetic Aperture Radar) algorithm. Unlike the conventional SAR images, the proposed TR-SAR system has an interesting property. Specifically, the target-related signal components due to the time-reversal refocusing characteristics, as well as some of clutter-related signal components are concentrated at the time-reversal reference point. The remaining clutter-related signal components are scattered around that reference point. In this paper, we model the random media as a collection of point scatterers to avoid unnecessary complexities. We calculate the detection probability of the TR radar system based on the proposed simple random media model.

Motion Sensing Algorithm for SAR Image Using Pre-Parametric Error Modeling (매개변수 사전 오차 모델링 기법을 이용한 SAR 요동측정 알고리즘)

  • Park, Woo Jung;Park, Yong-gonjong;Lee, Soojeong;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.566-573
    • /
    • 2019
  • In order to obtain high-quality images by motion compensation in the airborne synthetic aperture radar (SAR), accurate motion sensing in image acquisition section is necessary. Especially, reducing relative position error and discontinuity in motion sensing is important. To overcome the problem, we propose a pre-parametric error modeling (P-PEM) algorithm which is a real-time motion sensing algorithm for the airborne SAR in this paper. P-PEM is an extended version of parametric error modeling (PEM) method which is a motion sensing algorithm to mitigate the errors in the previous work. PEM estimates polynomial coefficients of INS error which can be assumed as a polynomial in the short term. Otherwise, P-PEM estimates polynomial coefficients in advance and uses at image acquisition section. Simulation results show that the P-PEM reduces relative position error and discontinuity effectively in real-time.

Development of System Performance Analysis Simulator for Spaceborne Synthetic Aperture Radar (위성용 영상레이더 시스템 성능 분석 시뮬레이터 개발)

  • Won, Young-Jin;Lee, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.318-327
    • /
    • 2017
  • Synthetic Aperture Radars (SARs) that can be performed regardless of weather and day-and-night conditions have been developed for Earth remote sensing in recent decades. Korea Aerospace Research Institute (KARI) has developed and launched successfully the KOrea Multi-Purpose SATellit-5 (KOMPSAT-5) which is the first Korean SAR satellite in 2013, and is currently developing the KOMPSAT-6 which is the next generation series of the SAR satellite. This paper describes the development of the system performance analysis simulator which is necessary for spaceborne SAR payload design and analysis. The system performance analysis simulator consists of the antenna pattern generation simulator, the SAR performance analysis simulator, and the image quality analysis simulator. The simulation results of this research show that this simulator can be applicable as the design and analysis tool for the spaceborne SAR payload system during the design phase.

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers (SAR 관련 논문 통계 분석에 의한 SAR 시스템, 기술, 활용분야 고찰)

  • Lee Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.153-174
    • /
    • 2006
  • The purpose of this paper is to establish the category of SAR(Synthetic Aperture Radar) systems, technologies and application fields, thus to provide the world-wide trend in SAR research and development activities by analysing SAR-related journal papers. This paper presents an analysis result of SAR-related journal papers published from the late 1960s to early 2005. Abstracts and indices of 2665 peer-reviewed, English journal papers published in 243 journals were collected from the Cambridge Scientific Abstracts and classified into the categories according to the system, technique, and application field. Statistics on each category were provided so that one can understand the historical and on-going development in SAR systems, techniques, and a variety of application fields such as land, ocean, cryosphere and atmosphere. This statistical analysis data would be a valuable guideline to establish a future SAR system application and satellite manoeuvering policy in Korea.

Analysis of Forest Stand Structure Using Spaceborne Synthetic Aperture Radar(SAR) Data (인공위성 레이다 영상자료를 이용한 임분구조의 물리적 특성파악)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.2
    • /
    • pp.79-91
    • /
    • 1992
  • With recent development in spaceborne imaging radar system, there are growing interests using satellite synthetic aperture radar(SAR) data in various applications. This study attempted to identify the relationships between several forest stand characteristics and radar backscatter, measured from space altitude altitude at three incidence angles. Shuttle Imaging Radar-B(SIR-B) data were collected over a forested area in northern Florida in October, 1984. By using various sources of reference data (forest type maps, inventory records, aerial photographs, and Landsat Thematic Mapper data), about 400 forest stands of known characteristics were carefully located in the radar data. Relative radar backscatter for the three incidence angles of SIR-B data were compared with known forest stand parameters such as mean tree height, diameter at breast height(DBH), stand density, biomass, and relative amount of understory vegetation. The results show that these stand parameters have statistically significant correlations with the radar backscatter. In addition, the SIR-B radar backscatter from a certain stand parameter turned out differently at the three different incidence angles. Finally, the types and characteristics of currently available satellite SAR data are discussed.