• Title/Summary/Keyword: Synthetic Spectrum

Search Result 160, Processing Time 0.03 seconds

New method for generation of artificial ground motion by a nonstationary Kanai-Tajimi model and wavelet transform

  • Amiri, G. Ghodrati;Bagheri, A.;Fadavi, M.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.709-723
    • /
    • 2007
  • Considering the vast usage of time-history dynamic analyses to calculate structural responses and lack of sufficient and suitable earthquake records, generation of artificial accelerograms is very necessary. The main target of this paper is to present a novel method based on nonstationary Kanai-Tajimi model and wavelet transform to generate more artificial earthquake records, which are compatible with target spectrum. In this regard, the generalized nonstationary Kanai-Tajimi model to include the nonstationary evaluation of amplitude and dominant frequency of ground motion and properties of wavelet transform is used to generate ground acceleration time history. Application of the method for El Centro 1940 earthquake and two Iranian earthquakes (Tabas 1978 and Manjil 1990) is presented. It is shown that the model and identification algorithms are able to accurately capture the nonstationary features of these earthquake accelerograms. The statistical characteristics of the spectral response of the generated accelerograms are compared with those for the actual records to demonstrate the effectiveness of the method. Also, for comparison of the presented method with other methods, the response spectra of the synthetic accelerograms compared with the models of Fan and Ahmadi (1990) and Rofooei et al. (2001) and it is shown that the response spectra of the synthetic accelerograms with the method of this paper are close to those of actual earthquakes.

Quality Monitoring for Domestic Distributing Engine Oil (국내 유통 엔진오일 품질 모니터링)

  • Lim, Young-Kwan;Lee, Eun-Yul;Lee, Kyoung-Mook;Na, Yong-Gyu;Kim, Jong-Ryeol
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.289-297
    • /
    • 2018
  • The vehicle lubricant has captured 35% of the total lubricant market while the engine oil possessed 77% of the vehicle lubricant market in Korea. The suitable quality management of circulating engine oil is thus required for the driver and engine protection. But, KS and synthetic engine oil products (containing over 30% synthetic oil) are exempt to any quality inspections under Petroleum and Alternative Fuel Business Act. In this study, our research group investigated the quality monitoring of 30 kinds of domestic distributing synthetic engine oils. Two kinds of the engine oil showed an off specification from the test results; one engine oil is an imported and the other is a KS synthetic one. Also, the pattern of engine oils were analyzed using SIMDIST (simulated distillation) and the most engine oils had a broad carbon number spectrum, which is a typical of mineral oils except several imported products. Thus, we concluded that relevant laws for the proper quality management of synthetic oils and KS products are needed to be established for preventing consumer's damages.

Spatial Analysis on Marine Atmosphere Boundary Layer Features of SAR Imagery Using Empirical Mode Decomposition

  • Jo, Young-Heon;Oliveira, Gustavo Henrique;Yan, Xiao-Hai
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.351-358
    • /
    • 2017
  • A new method to decompose the footprints of marine atmosphere boundary layer (MABL) on Synthetic Aperture Radar (SAR) imagery into characteristic spatial scales is proposed. Using two-dimensional Empirical Mode Decomposition (EMD) we obtain three Intrinsic Mode Functions (IMFs), which mainly present longitudinal rolls, three-dimensional cells and atmospheric gravity waves (AGW). The rolls and cells have spatial scales between 3.0 km and 3.8 km and between 5.3 km and 7.1 km, respectively. Based on previous observations and mixed-layer similarity theory, we estimated MABL's depths that vary from 0.95 km to 1.2 km over the rolls and from 3.0 km to 3.8 km over the cells. The AGW has maximum spectrum at 14.3 km wavelength. The method developed in this work can be used to decompose other satellite imageries into individual features through characteristic spatial scales.

Proliferative and Synthetic Responses of Airway Smooth Muscle in Asthma (천식에서 기도평활근의 증식과 합성 반응에 대한 최신지견)

  • Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.580-587
    • /
    • 2005
  • New evidence is emerging that airway smooth muscle(ASM) may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, polypeptide growth factors, extracellular matrix proteins, cell adhesion receptors and co-stimulatory molecules. ASM can promote the formation of the interstitial extracellular matrix, and potentially contribute to the alterations within the extracellular matrix in asthma. In addition, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells through integrin-directed signaling. Increased ASM mass is one of the most important features of the airway wall remodeling process in asthma. Three different mechanisms may contribute to the increased ASM mass : cell proliferation, increased migration and decreased rate of apoptosis. The major signaling pathways of cell proliferation activated by ASM mitogens are those dependent on extracellular signal-regulated kinase and phosphoinositide 3'-kinase. The key signaling mechanisms of cell migration have been identified as the p38 mitogen-activated protein kinase and the p21-activated kinase 1 pathways. ASM cells contain ${\beta}2$-adrenergic receptors and glucocorticoid receptors. They may represent a key target for ${\beta}2$-adrenergic receptor agonist/corticosteroid interactions which have antiproliferative activity against a broad spectrum of mitogens.

Seismic response modification factors for stiffness degrading soil-structure systems

  • Ganjavi, Behnoud;Bararnia, Majid;Hajirasouliha, Iman
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.159-170
    • /
    • 2018
  • This paper aims to develop response modification factors for stiffness degrading structures by incorporating soil-structure interaction effects. A comprehensive parametric study is conducted to investigate the effects of key SSI parameters, natural period of vibration, ductility demand and hysteretic behavior on the response modification factor of soil-structure systems. The nonlinear dynamic response of 6300 soil-structure systems are studied under two ensembles of accelograms including 20 recorded and 7 synthetic ground motions. It is concluded that neglecting the stiffness degradation of structures can results in up to 22% underestimation of inelastic strength demands in soil-structure systems, leading to an unexpected high level of ductility demand in the structures located on soft soil. Nonlinear regression analyses are then performed to derive a simplified expression for estimating ductility-dependent response modification factors for stiffness degrading soil-structure systems. The adequacy of the proposed expression is investigated through sensitivity analyses on nonlinear soil-structure systems under seven synthetic spectrum compatible earthquake ground motions. A good agreement is observed between the results of the predicted and the target ductility demands, demonstrating the adequacy of the expression proposed in this study to estimate the inelastic demands of SSI systems with stiffness degrading structures. It is observed that the maximum differences between the target and average target ductility demands was 15%, which is considered acceptable for practical design purposes.

Computational evaluation of wind loads on a standard tall building using LES

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.567-598
    • /
    • 2014
  • In this paper, wind induced aerodynamic loads on a standard tall building have been evaluated through large-eddy simulation (LES) technique. The flow parameters of an open terrain were recorded from the downstream of an empty boundary layer wind tunnel (BLWT) and used to prescribe the transient inlet boundary of the LES simulations. Three different numerically generated inflow boundary conditions have been investigated to assess their suitability for LES. A high frequency pressure integration (HFPI) approach has been employed to obtain the wind load. A total of 280 pressure monitoring points have been systematically distributed on the surfaces of the LES model building. Similar BLWT experiments were also done to validate the numerical results. In addition, the effects of adjacent buildings were studied. Among the three wind field generation methods (synthetic, Simirnov's, and Lund's recycling method), LES with perturbation from the synthetic random flow approach showed better agreement with the BLWT data. In general, LES predicted peak wind loads comparable with the BLWT data, with a maximum difference of 15% and an average difference of 5%, for an isolated building case and however higher estimation errors were observed for cases where adjacent buildings were placed in the vicinity of the study building.

Genetic Diversity and Dye-Decolorizing Spectrum of Schizophyllum commune Population

  • Choi, Yongjun;Nguyen, Ha Thi Kim;Lee, Tae Soo;Kim, Jae Kwang;Choi, Jaehyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1525-1535
    • /
    • 2020
  • Synthetic dyes are widely used in various industries and their wastage causes severe environmental problems while being hazardous to human health, leading to the need for eco-friendly degradation techniques. The split-gill fungus Schizophyllum commune, which is found worldwide, has the potential to degrade all components of the lignocellulosic biomass and is a candidate for the treatment of synthetic dyes. A systematic molecular analysis of 75 Korean and 6 foreign S. commune strains has revealed the high genetic diversity of this population and its important contribution to the total diversity of S. commune. We examined the dye decolorization ability of this population and revealed 5 excellent strains that strongly decolorized 3 dyes: Crystal Violet, Congo Red and Methylene Blue. Finally, comparison of dye decolorization ability and the phylogenetic identification of these strains generalized their genetic and physiological diversity. This study provides an initial resource for physiological and genetic research projects as well as the bioremediation of textile dyes.

Application of Laser Induced Photoacoustic Spectroscopy in the Investigation of Interaction of Neodymium(III) with Water Soluble Synthetic Polymer

  • Tae Hyung Yoon;Hichung Moon;Seung Min Park;Joong Gill Choi;Paul Joe Chong
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.574-578
    • /
    • 1993
  • Laser-induced photoacoustic spectroscopy (LIPAS), which utilizes the photothermal effect that results from nonradiative relaxation of excited state molecules, was used in the speciation analysis of the complexes of neodymium(III) and water soluble synthetic polyelectrolyte, poly methacrylic acid (PMAA), in 0.1 M $NaClO_4$ at pH of 6.0. The minimum detection limit of Nd(III) by LIPAS was $5.O{\times}10^{-6}$ M. Experiment was carried out at low concentration ratio of Nd(III) to PMAA to assure that 1 : 1 complexes predominate. The bound and free Nd(III) species were characterized by measuring nonradiative relaxation energy of the excited states $(^2GM{7/2}\;and\;^4G_{5/2})$ to the metastable state $(^4G_{3/2})$. Two species were quantified by deconvolution of the mixed spectrum using their respective reference spectra. The conditional stability constant measured by LIPAS was 5.52 L$mol^{-1}$.

Recent NMR developments for pharmaceutical research

  • Lee, Kwanghwan
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • NMR spectrometer has been regarded as essential tool for structure elucidation in variable scientific field as like organic synthesis, natural product and macro protein research. Also NMR can be applied for defining dynamic behavior like ligand and receptor binding. One of advantage of research with NMR is that to be great confident to confirm structure and the measured sample could be recovered. Nevertheless NMR also has a weak points than other spectroscopic methods that require a lot of time for interpreting acquired spectrum and running time due to low sensitivity. For last two decade Bruker has developed hardware and software solution for overcome those weak points. In order to overcome low sensitivity Bruker introduced Cryo and Micro diameter probe head technology. And researcher can reduce the time for routine spectrum processing and interpretation works due to lots of introductions in software solutions for quantification, identification and statistics analysis. With four examples, this article describing those new hardware and software solutions in field of recent pharmaceutical research as follows. - New Horizons for NMR in the Biopharmaceutical Industry - The development and application of solid-state NMR spectroscopy (SSNMR) in pharmaceutical analysis - Assisted NMR Data Interpretation in Synthetic Chemistry - Complete Analysis of New Psychoactive Substances Using NMR.

Multi-criteria performance-based optimization of friction energy dissipation devices in RC frames

  • Nabid, Neda;Hajirasouliha, Iman;Petkovski, Mihail
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.185-199
    • /
    • 2020
  • A computationally-efficient method for multi-criteria optimisation is developed for performance-based seismic design of friction energy dissipation dampers in RC structures. The proposed method is based on the concept of Uniform Distribution of Deformation (UDD), where the slip-load distribution along the height of the structure is gradually modified to satisfy multiple performance targets while minimising the additional loads imposed on existing structural elements and foundation. The efficiency of the method is demonstrated through optimisation of 3, 5, 10, 15 and 20-storey RC frames with friction wall dampers subjected to design representative earthquakes using single and multi-criteria optimisation scenarios. The optimum design solutions are obtained in only a few steps, while they are shown to be independent of the selected initial slip loads and convergence factor. Optimum frames satisfy all predefined design targets and exhibit up to 48% lower imposed loads compared to designs using a previously proposed slip-load distribution. It is also shown that dampers designed with optimum slip load patterns based on a set of spectrum-compatible synthetic earthquakes, on average, provide acceptable design solutions under multiple natural seismic excitations representing the design spectrum.