• Title/Summary/Keyword: Synthetic Nano FeS

Search Result 6, Processing Time 0.023 seconds

A Study on the Removal of Heavy Metals from Groundwater Using Permeable Reactive Barriers Based on Nano FeS (나노 FeS를 이용한 투과성반응벽체의 중금속 오염 지하수 처리에 관한 연구)

  • Jung, Gwan-Ju;Choi, Sang-Il;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.19-28
    • /
    • 2009
  • The acid mine drainage (AMD) and landfill leachates released into the subsurface environment can result in serious environmental problems like soil and groundwater contamination. The AMD and the leachates of landfill were known to contain many heavy metals. In this study, the author assessed the reactivity and ability of the FeS coated-ALC for the removal of contaminants (As, Cd, Cu, Pb, Ni, Zn, Al) in AMD and leachates in landfill. The synthetic nano-FeS and Autoclaved Lightweight Concrete (ALC) were used as reactive materials in the permeable reactive barriers(PRBs). The result of batch test indicated that synthetic nano-FeS can remove 99% of heavy metals for the 1hr of reaction time except for As and Ni(about 90%). However, the 80% of As and Ni was removed in column 1(FeS coated-ALC). The column 2(Ore FeS) removed more than 99% of heavy metals. The pH of the column 1 was increased from 3.51 to 6.39~6.50, and the pH with column 2 was increased from 3.51 to 9.20. As the result of this study, the author can surmise that the synthetic nano-FeS coated ALC will use as a very good reactive material of the PRBs to treat the contaminated groundwater with AMD and leachate of landfill.

Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent

  • Raji, Jeevitha R.;Palanivelu, Kandasamy
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.61-77
    • /
    • 2016
  • $NanoTiO_2$ was synthesized by ultrasonication assisted sol-gel process and subjected to iron doping and carbon-iron codoping. The synthesized catalysts were characterized by XRD, HR-SEM, EDX, UV-Vis absorption spectroscopy and BET specific surface area analysis. The average crystallite size of pure $TiO_2$ was in the range of 30 - 33 nm, and that of Fe-$TiO_2$ and C-Fe $TiO_2$ was in the range of 7 - 13 nm respectively. The specific surface area of the iron doped and carbon-iron codoped nanoparticles was around $105m^2/g$ and $91m^2/g$ respectively. The coupled semiconductor photo-Fenton's activity of the synthesized catalysts was evaluated by the degradation of a cationic dye (C.I. Basic blue 9) and an anionic dye (C.I. Acid orange 52) with concurrent investigation on the operating variables such as pH, catalyst dosage, oxidant concentration and initial pollutant concentration. The most efficient C-Fe codoped catalyst was found to effectively destruct synthetic dyes and potentially treat real textile effluent achieving 93.4% of COD removal under minimal solar intensity (35-40 kiloLUX). This reveals the practical applicability of the process for the treatment of real wastewater in both high and low insolation regimes.

On the preparation of iron pyrite from synthetic and natural targets by pulsed electron deposition

  • Al-Shareeda, Omar;Henda, Redhouane;Pratt, Allan;McDonald, Andrew M.
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • We report on the preparation of iron pyrite ($FeS_2$) using pulsed electron ablation of two targets, namely, a mixture of sulfur and iron compound target, and a natural iron pyrite target. Thin films of around 50 nm in thickness have been deposited on glass substrates under Argon background gas at 3 mTorr, and at a substrate temperature of up to $450^{\circ}C$. The thin films have been analyzed chemically and examined structurally using x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and visible Raman spectroscopy. The morphology and thickness of the films have been assessed using scanning electron microscopy (SEM) and visible spectroscopic reflectance. The preliminary findings, using a synthetic target, show the presence of iron pyrite with increasing proportion as substrate temperature is increased from $150^{\circ}C$ to $250^{\circ}C$. The data have not shown any evidence of pyrite in the deposited films from a natural target.

Application of Nano Fe°-impregnated Biochar for the Stabilization of As-contaminated Soil (비소 오염토양의 안정화를 위한 나노 Fe° 담지 바이오차 적용 연구)

  • Choi, Yu-Lim;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Joo, Wan-Ho;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.350-362
    • /
    • 2020
  • In this study, nano Fe°-impregnated biochar (INPBC) was prepared using pruning residues and one-pot synthetic method and evaluated its performance as an amendment agent for the stabilization of arsenic-contaminated soil. For the preparation of INPBC, the mixture of pruning residue and Fe (III) solution was heated to 220℃ for 3hr in a teflon-sealed autoclave followed by calcination at 600℃ under N2 atmosphere for 1hr. As-prepared INPBC was characterized using FT-IR, XRD, BET, SEM. For the stabilization test of as-prepared INPBC, As-contaminated soils (Soil-E and Soil-S) sampled from agricultural sites located respectively near E-abandoned mine and S-abandoned mine in South Korea were mixed with different of dosage of INPBC and cultivated for 4 weeks. After treatment, TCLP and SPLP tests were conducted to determine the stabilization efficiency of As in soil and showed that the stabilization efficiency was increased with increasing the INPBC dosage and the concentration of As in SPLP extractant of Soil-E was lower than the drinking water standard level of Ministry of Environment of South Korea. The sequential fractionation of As in the stabilized soils indicated that the fractions of As in the 1st and 2nd stages that correspond liable and known as bioavailable fraction were decreased and the fractions of As in 3rd and 4th stages that correspond relatively non-liable fraction were increased. Such a stabilization of As shows that the abundant nano Fe° on the surface of INPBC mixed with As-contaminated soils played the co-precipitation of As leaching from soil by surface complexation with iron. The results of this study may imply that INPBC as a promising amendments for the stabilization of As-contaminated soil play an important role.

Synthesis and Rietveld Refinement of the Cathode Material $LiFePO_4/C$ for Rechargeable Lithium Batteries (리튬 2차전지용 양극소재 $LiFePO_4/C$의 합성 및 리트벨트 구조분석)

  • Hwang, Gil-Chan;Choi, Jin-Beom;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • Carbon-coated lithium iron phosphate ($LiFePO_4/C$) composites are synthesized by the modified mechanical activation method (modified MA process) and studied by the Rietveld structural refinement. Rietveld indices of $LiFePO_4/C$ indicate good fitting with $R_p=8.14%,\;R_{wp}=11.1%,\;R_{exp}=9.09%,\;R_B=3.88%$, and S (GofF, Goodness of fit) = 1.2, respectively. $LiFePO_4/C$ with a space group Pnma shows a = 10.3229(3)${\AA}$, b = 6.0052(2) ${\AA}$, c = 4.6939(1) ${\AA}$, and V = 290.98(1) ${\AA}^3$ in dimension, indicating good agreements with those of previous works. Synthetic powders are nano-sized ($65{\sim}90nm$) homogeneous particles with high purity. Thus the modified MA method will be an efficient process to get a high quality cathode material for commercial lithium batteries.

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF