• Title/Summary/Keyword: Synthetic Jet Actuators

Search Result 9, Processing Time 0.019 seconds

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

Active Flow Control Using the Synthetic Jet Actuator (Synthetic Jet Actuator를 이용한 능동 유동 제어)

  • Noh Jongmin;Kim Chongam
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-69
    • /
    • 2005
  • Curretly, the development of MEMS(Micro Electronic Mechanical System) technology awakes many research's interest for the aerodynamics. This work presents the development of a compact synthetic jet actuator for flow separation control at the flat plate. The formation and evolution of fluidic actuators based on synthetic jet technology are investigated using Reynolds-Averaged Navier-Stokes equations. Also, 2-Dimensional, unsteady, incompressible Navier-Stokes equation solver with single partitioning method for Multi-Block grid to analyze and a modeled boundary condition in developed fo. the synthetic jet actuator. Both laminar and turbulent jets are investigated. Results show very good agreement with experimental measurements. A jet flow develops, even though no net mass flow is introduced. Pair of counter-rotating vortices are observed near the jet exit as are observed in the experiments.

  • PDF

Experimental Study on Synthetic Jet Actuators for Separation Delay (유동 박리를 지연시키기 위한 합성제트 구동기 연구)

  • Kwon, O-Hyun;Byun, Seon-Woo;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • The size of commercial wind turbines has been increased. Generally, the pitch control is used to increase the efficiency of wind turbine. However, the pitch control has difficulty to control the local unsteady flow control which makes fatigue load and decreases the efficiency. In this research, Synthetic Jet Actuators(SJAs) are manufactured and applied into a wing section to delay flow separation and increase aerodynamic performances. The SJAs as a kind of zero-net mass-flux actuators injects and removes fluid through a small orifice with a given frequency. The SJA modules actuated by piezoelectric disks are manufactured and the aerodynamic performances are measured according to the shape of the orifice and the velocity of the jets through the wind tunnel test. It is confirmed that as the velocity of the jets are increased using rectangular shape orifice, drag force is decreased and lift force in increased.

NUMERICAL INVESTIGATION OF VORTICAL FLOW INDUCED BY A SYNTHETIC JET ACTUATOR (Synthetic Jet 주위 유도 와류에 대한 수치 해석)

  • Park, S.H.;Sa, J.H.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.120-125
    • /
    • 2006
  • Piezoelectric actuators have been investigated for flow control in the field of fluid dynamics. Numerical simulation for a single diaphragm piezoelectric actuator operating in quiescent air is performed to investigate the complex flow field around the slot exit. A periodic velocity transpiration condition is applied to simulate the effect of the moving diaphragm. The computational results for the flow field around the slot exit agree well with the experimental data. The results also show that low pressure regions due to the vortex pairing cause non-monotonic variations in the vertical velocity.

  • PDF

Development of Synthetic-Jet based micro air pump for BOP system of mobile fuel cell (모바일 연료전지 BOP를 위한 Synthetic-Jet 기반 마이크로 에어펌프 개발)

  • Kim, K.S.;Choi, J.P.;Koo, B.S.;Jang, J.H.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.247-251
    • /
    • 2008
  • This paper presents a micro air pump actuated by PZT actuator (synthetic jet actuator) for air supply for micro fuel cells. The synthetic jet actuators are usually created by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. To design the micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. A prototype of the micro air pump, with a size of $mm{\times}mm{\times}mm$, was fabricated by PDMS replication process and was conducted performance test. To control the PZT actuator, we used the SP4423 micro chips that can be amplified input voltage to reduce the controller size and the power consumption. With a voltage of 3V at 100Hz, the air pump's pumping pressure is 600pa and its power consumption is only 0.1mW.

  • PDF

Active Flow Control on a UCAV Planform Using Synthetic Jets

  • Lee, Junhee;Lee, Byunghyun;Kim, Minhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.315-323
    • /
    • 2016
  • This paper deals with experimental investigation of active flow control via synthetic jets using an unmanned combat air vehicle (UCAV) planform. Fourteen arrays of synthetic jets, mounted along both leading edges, were fully or partially activated to increase aerodynamic efficiency and reduce pitch-up moment. The measurements were carried out using a six-component external balance, a pressure scanner, and tuft flow visualization. It was observed that aerodynamic efficiency (L/D) and pitching moment were clearly affected by the location of jets. In particular, inboard and outboard actuation could effectively increase L/D. Moreover, inboard actuation showed a reduction in the pitch-up, even more than that generated by the full actuation. These results suggest that inboard actuation not only effectively increases L/D but also reduces the pitch-up using only a few actuators.

Generation and Characterization of Homogeneous Isotropic Turbulence (균질한 등방향성 난류 생성 및 특성 변화 분석)

  • Lee, HoonSang;Han, KyuHo;Park, Han June;Jung, HyunKyun;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Homogeneous and isotropic turbulence (HIT) with no mean flow is a very useful type of flow for basic turbulence research. However, it is difficult to generate HIT in the lab. In this study, we implemented HIT in a confined box through synthetic jet actuators using sub-woofer speakers. Characteristics of HIT are varied depending on the strength of the jets. We used 2D PIV to measure the velocity field. Turbulence statistics such as homogeneity, isotropy ratio, turbulence kinetic energy, dissipation rate, Taylor microscale, Kolmogorov scale, and velocity correlation coefficient were calculated. Most of the turbulence statistics increased exponentially according to the strength of the jets, and the Taylor Reynolds number reached up to 185.

Demonstration of Robust Micromachined Jet Technology and Its Application to Realistic Flow Control Problems

  • Chang Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.554-560
    • /
    • 2006
  • This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

Influence of Electrode Position on Performance of Sparkjet Actuator Using Numerical Analysis (수치해석을 이용한 전극 위치에 따른 스파크제트 액츄에이터의 성능 연구)

  • Shin, Jin Young;Kim, Hyung-Jin;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.753-760
    • /
    • 2019
  • Sparkjet actuator, also known as plasma synthetic jet actuator, which is a kind of active flow control actuator is considered as being high possibility for the supersonic flow control due to ejecting stronger jet compared to the other active flow control actuators. Sparkjet actuator generates high temperature and high pressure flow inside the cavity by using arc plasma and leads momentum by ejecting such flow through orifice or nozzle. In this research, numerical calculation of sparkjet actuator with respect to the location of electrodes which exists inside the cavity is conducted and the change of the performance of sparkjet actuator is suggested. As the location of electrodes goes closer to the bottom of the cavity, impulse is increased and the average pressure inside the cavity maintains higher. When the location of electrode is 25% and 75% of the entire cavity height, impulse is 2.515 μN·s and 2.057 μN·s, respectively. Each impulse is changed by about 9.92% and -10.09% compared to when the location of electrodes is 50% of the entire cavity height.