• Title/Summary/Keyword: Synthetic Aperture Radar

Search Result 583, Processing Time 0.038 seconds

Performance Analysis of the Inversion Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Inversion 기법 성능 분석)

  • 최정희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.130-138
    • /
    • 2003
  • The classical image reconstruction for stripmap-mode Synthetic Aperture Radar is the Range-Doppler algorithm. When the spotlight-mode SAR system was envisioned, Range-Doppler algorithm turned out to fail rapidly in this SAR imaging modality. Thus, what is referred to as Polar format algorithm, which is based on the Plane wave approximation, was introduced for imaging from spotlight-mode SAR raw- data. In this paper, we have studied for the raw data processing schemes in the spotlight-mode Synthetic Aperture Radar. We apply the Wavefront Reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the Polar format inversion scheme.

Design of Omni-directional Reflector for Synthetic Aperture Radar (합성개구레이더용 전방향 반사기의 설계)

  • Chang, Geba;Oh, Yi-Sok;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.501-506
    • /
    • 2007
  • Basic research is conducted to identify a target using corner reflectors which are commonly used in calibration of synthetic aperture radar (SAR) systems. At first, an omni-directional reflector is fabricated by combining four 15-cm rectangular trihedral corner reflectors. Then, its radar cross section (RCS) characteristics are measured at C-band (5.3 GHz) for vv-, hh-, hv-, and vh- polarizations at a range of horizontal angle, $-90^{\circ}{\le}{\phi}{\le}90^{\circ}$. The measured RCS angular variation of the omni-directional reflector is much smaller for vv-polarization than other polarizations, and the difference between the maximum and minimum RCSs for vv-polarization is about 8 dB. Peak RCS values are shown at $0^{\circ}$ (normal to plates) and $45^{\circ}$ (direction of bore sight). It is shown that the measurements agree quite well with numerical simulation and theoretical computation results.

Raw-data Processing Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Raw-data Processing 기법 분석)

  • 박현복;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.501-504
    • /
    • 2000
  • The classical image reconstruction for stripmap SAR is the range-Doppler imaging. However, when the spotlight SAR system was envisioned, range-Bowler imaging fumed out to fail rapidly in this SAR imaging modality. What is referred to as polar format processing, which is based on the plane wave approximation, was introduced for imaging from spotlight SAR data. This paper has been studied for the raw data processing schemes in the spotlight-mode synthetic aperture radar. we apply the wavefront reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the polar format inversion scheme.

  • PDF

BORA IN THE ADRIATIC SEA AND BLACK SEA IMAGED BY THE ENVISAT SYNTHETIC APERTURE RADAR

  • Ivanov, Andrei Yu.;Alpers, Werner
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.964-968
    • /
    • 2006
  • Bora events over the Adriatic Sea and Black Sea are investigated by using synthetic aperture radar (SAR) images acquired by the Advanced Synthetic Aperture Radar (ASAR) onboard the European Envisat satellite. These images show pronounced elongated patterns of increased sea surface roughness caused by bora winds. The comparison of the SAR images with wind fields derived from Quikscat data confirms that in all cases a strong northeasterly wind was blowing from the mountains onto the sea. It is shown that the SAR images reveal details of the spatial extent of the bora wind fields over the sea which cannot be obtained by other instruments. Furtheremore, also quantitative information on the wind field is extracted from the SAR images by using a wind scatterometer model.

  • PDF

A Despeckling Method Using Deep Convolutional Neural Network in Synthetic Aperture Radar Image (깊은 합성곱 신경망을 이용한 Synthetic Aperture Radar 영상 내 반전 잡음 성분 제거 기법)

  • Kim, Moonheum;Lee, Junghyun;Jeong, Jaechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.66-69
    • /
    • 2017
  • 본 논문에서는 깊은 합성 곱 신경망 (Deep Convolutional Neural Network) 를 이용해서 SAR (Synthetic Aperture Radar) 영상의 반전 잡음 (speckle noise) 성분을 제거하는 기법을 제안하고자 한다. Deep Convolutional Neural Network는 이미지의 데이터 특성에 적합한 딥 러닝 방법이고, 이는 SAR 위성영상의 반전 잡음 제거에 사용해도 효과적이다. 반전 잡음 필터 모델 추정을 위한 학습은 임의로 반전 잡음을 합성한 트레이닝 이미지들과 원본 트레이닝 이미지들을 이용한 회귀모델을 통해 진행된다. 학습을 통해 얻은 반전 잡음 필터는 기존 알고리즘에 비해 우수한 외곽선 보존 성능을 나타냄을 확인하였다.

  • PDF

Structural Design of Planar Synthetic Aperture Radar (SAR) Antenna for Microsatellites

  • Dong-Guk Kim;Sung-Woo Park;Jong-Pil Kim;Hwa-Young Jung;Yu-Ri Lee;Eung-Noh You;Hee Keun Cho;Jin Hyo An;Goo-Hwan Shin
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.225-235
    • /
    • 2023
  • This paper presents the structural design of a planar synthetic aperture radar (SAR) antenna applied to a microsatellite. For micro-satellite applications, the SAR antenna structure must be lightweight, flat, and designed to withstand the launch environment. To satisfy these conditions, our novel antenna structure was designed using aluminium (AL) alloy. Structural analysis was performed for quasi-static load, random vibration, and shock load to verify its robustness in the launch environment, and the results are presented here.

Target-to-Clutter Ratio Enhancement of Images in Through-the-Wall Radar Using a Radiation Pattern-Based Delayed-Sum Algorithm

  • Lim, Youngjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.405-410
    • /
    • 2014
  • In this paper, we compare the quality of images reconstructed by a conventional delayed-sum (DS) algorithm and radiation pattern-based DS algorithm. In order to evaluate the quality of images, we apply the target-to-clutter ratio (TCR), which is commonly used in synthetic aperture radar (SAR) image assessment. The radiation pattern-based DS algorithm enhances the TCR of the image by focusing the target signals and preventing contamination of the radar scene. We first consider synthetic data obtained through GprMax2D/3D, a finite-difference time-domain (FDTD) forward solver. Experimental data of a 2-GHz bandwidth stepped-frequency signal are collected using a vector network analyzer (VNA) in an anechoic chamber setup. The radiation pattern-based DS algorithm shows a 6.7-dB higher TCR compared to the conventional DS algorithm.

Bistatic Synthetic Aperture Radar Imaging Using a Monostatic Equivalent Model (모노스태틱 등가 모델을 활용한 바이스태틱 SAR 영상 형성에 관한 연구)

  • Ryu, Bo-Hyun;Kang, Byung-Soo;Lee, Myung-Jun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.693-700
    • /
    • 2018
  • In this paper, we propose a method to generate SAR(synthetic aperture radar) images for bistatic radar. The bistatic SAR can overcome several limitations of monostatic SAR, because the former can be applied to a variety of scenarios, compared to the latter. However, no study has been conducted on bistatic SAR imaging so far. In this paper, we propose a method to generate bistatic SAR images using the monostatic equivalent model and conventional monostatic SAR imaging algorithms. Simulations using airborne SAR in the bistatic geometry validated the efficacy of the proposed method.

Interference Analysis for Synthetic Aperture Radar Calibration Sites with Triangular Trihedral Corner Reflectors

  • Shin, Jae-Min;Ra, Sung-Woong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • The typical method for performing an absolute radiometric calibration of a Synthetic Aperture Radar (SAR) System is to analyze its response, without interference, to a target with a known Radar Cross Section (RCS). To minimize interference, an error-free calibration site for a Corner Reflector (CR) is required on a wide and flat plain or on an area without disturbance sources (such as ground objects). However, in reality, due to expense and lack of availability for long periods, it is difficult to identify such a site. An alternative solution is the use of a Triangular Trihedral Corner Reflector (TTCR) site, with a surrounding protection wall consisting of berms and a hollow. It is possible in this scenario, to create the minimum criteria for an effectively error-free site involving a conventional object-tip reflection applied to all beams. Sidelobe interference by the berm is considered to be the major disturbance factor. Total interference, including an object-tip reflection and a sidelobe interference, is analyzed experimentally with SAR images. The results provide a new guideline for the minimum criteria of TTCR site design that require, at least, the removal of all ground objects within the fifth sidelobe.

WAVENUMBER CORRELATION ANALYSIS OF RADAR INTERFEROGRAM

  • Won, Joong-Sun;Kim, Jeong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.425-428
    • /
    • 1999
  • The radar interferogram represents phase differences between the two synthetic aperture radar observations acquired in slightly different angle. The success of the radar interferometric application largely depends on the quality of the interferogram generated from two or more synthetic aperture radar data sets. We propose here to apply the wavenumber correlation analysis to the in-phase and quadrature phase of the radar interferogram. The wavenumber correlation analysis is to resolve the highly correlated components from the low correlation components by estimating correlation coefficients for each wavenumber component. Through this approach, one can easily distinguish the signal components from the noise components in the wavenumber domain. Therefore, the wavenumber correlation analysis of the radar interferogram can be utilized to design post filter and to estimate the quality of interferogram. We have tested the wavenumber correlation analysis using a Radarsat SAR data pair to demonstrated the effectiveness of

  • PDF