• Title/Summary/Keyword: Synthesized powder materials

Search Result 794, Processing Time 0.025 seconds

Fabrication of ZrB2-based Composites for Ultra-high Temperature Materials (초고온 소재용 ZrB2계 복합소재의 제조)

  • Kim, Seong-Won;Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Nahm, Sahn
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.442-448
    • /
    • 2009
  • $ZrB_2$-based composites are candidate materials for ultra-high temperature materials (UHTMs). $ZrB_2$ has become an indispensable ingredient in UHTMs, due to its high melting temperature, relatively low density, and excellent resistance to thermal shock or oxidation. $ZrB_2$ powders are usually synthesized by solid state reactions such as carbothermal, borothermal, or combined carbothermal reaction. SiC is added to this system in order to enhance the oxidation resistance of $ZrB_2$. In this study, $ZrB_2$?based composites were successfully synthesized and densified through two different processing paths. $ZrB_2$ or $ZrB_2$ 25 vol.%SiC was fully synthesized from oxide starting materials with reducing agents after heat treatment at 1400$^{\circ}C$. Besides, $ZrB_2$?20 vol.%SiC was fully densified with $B_4C$ as a sintering additive after hot pressing at 1900$^{\circ}C$. The synthesis mechanism and the effect of sintering additives on densification of $ZrB_2$ ?SiC composites were also discussed.

Carbothermal Reduction of Oxide Powder Prepared from Waste WC/Co Hardmetal by Solid Carbon (WC/Co 초경 스크랩 산화물의 고체탄소에 의한 환원/침탄)

  • Lee Gil-Geun;Ha Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.112-116
    • /
    • 2005
  • In the present study, the focus is on the analysis of carbothermal reduction of oxide powder prepared from waste WC/Co hardmetal by solid carbon under a stream of argon for the recycling of the WC/Co hard-metal. The oxide powder was prepared by the combination of the oxidation and crushing processes using the waste $WC-8 wt.\%Co$ hardmetal as the raw material. This oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and gases discharge of the mixture during carbothermal reduction was analysed using XRD and gas analyzer. The oxide powder prepared from waste $WC-8wt.\%Co$ hardmetal has a mixture of $WO_{3} and CoWO_{4}$. This oxide powder reduced at about $850^{\circ}C$, formed tungsten carbides at about $950^{\circ}C$, and then fully transformed to a mixed state of tungsten carbide (WC) and cobalt at about $1100^{\circ}C$ by solid carbon under a stream of argon. The WC/Co composite powder synthesized at $1000^{\circ}C$ for 6 hours from oxide powder of waste $WC-8wt.\%Co$ hardmetal has an average particle size of $0.3 {\mu}m$.

Effect of Dispersant on the Characterization of Cu Powders Prepared with Wet-reduction Process (액상-환원법으로 합성된 Cu 분말의 특성에 미치는 분산제의 영향)

  • Kim, Yong-Yee;Kim, Tea-Wan;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.50-55
    • /
    • 2007
  • Ultra-fine Copper powder for a conductive paste in electric-electronic field have been synthesized by chemical reduction of aqueous $CuSO_4$ with hydrazine hydrate $(N_2H_4{\cdot}H_2O)$ as a reductor. The effect of reaction conditions such as dispersant and reaction temperature on the particle size and shape for the prepared Cu powders was investigated by means of XRD, SEM, TEM and TGA. Experiments showed that type of dispersant and reaction temperature were affected on the particle size and morphology of the copper powder. When the carboxymethyl cellulose (CMC) was added as a dispersant the relative mono-dispersed and spherical Cu powder was obtained. Cu powders with particle size of approximately 140nm and narrow particle size distribution were obtained from 0.3M $CuSO_4$ with adding of 0.03M CMC and 40ml $N_2H_4{\cdot}H_2O$ at a reaction temperature of $70^{\circ}C$.

Synthesis of Lanthanides Doped $CaTiO_3$ Powder by the Combustion Process

  • Jung, Choong-Hwan;Park, Ji-Yeon;Lee, Min-Yong;Oh, Seok-Jin;Kim, Hwan-Young;Hong, Gye-Won
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2000
  • Lanthanides such as La, Gd and Ce have recognized as elements of high level radioactive wastes immobilized by forming solid solution with $CaTiO_3$. For easy forming solid solution between $CaTiO_3$and lanthanides, the combustion synthesis process was applied and the powder characteristics and sinterability were investigated. The proper selection of the type and the composition of fuels are important to get the crystalline solid solution of $CaTiO_3$and lanthanides. When glycine or the mixtures of urea and citric acid with stoichiometric composition was used as a fuel, the solid solution of $CaTiO_3$with $La_2O_3$or $Gd_2O_3$or $CeO_2$was produced very well by the combustion process. The combustion synthesized powder seemed to have a good sinterability with the linear shrinkage of more than 25% up to $1500^{\circ}C$, while that of the solid state reacted powder was less than 10% at the same condition.

  • PDF

Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials (수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용)

  • Lim, JinYoung;Ahn, Jeongseok;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.

Microstructure Control of Porous In-situ Synthesized $Si_2N_2O-Si_3N_4$ Ceramics

  • Paul, Rajat Kanti;Lee, Chi-Woo;Kim, Hai-Doo;Lee, Byong-Taek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.325-326
    • /
    • 2006
  • Using $6wt%Y_2O_3-2wt%Al_2O_3$ as sintering additives and Si as a raw powder, the continuously porous in-situ $Si_2N_2O-Si_3N_4$ bodies were fabricated by multi-pass extrusion process and their microstructures were investigated depending on the addition of carbon (0-9wt%) in the mixture powder. The introduction of $Si_2N_2O$ fibers observed in the unidirectional continuous pores as well as in the pore-frame regions of the nitrided bodies can be an effective method in increasing the filtration efficiency. In the case of no carbon addition, the network type $Si_2N_2O$ fibers with high aspect ratio appeared in the continuous pores with diameters of 150-200 nm. However, in the case of 9wt% C addition, the fibers were found without any network type and had diameters of 200-250 nm.

  • PDF

EFFECTS OF MILLING DURATION ON THE THERMOELECTRIC PROPERTIES OF N-TYPE Bi2Te2.7Se0.3

  • MIN-SOO PARK;HYE-YOUNG KOO;YONH-HO PARK;GOOK-HYUN HA
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.591-595
    • /
    • 2019
  • In this study, an oxide reduction process and a reduction-sintering process were employed to synthesize a thermoelectric alloy from three thermoelectric composite oxide powders, and the thermoelectric properties were investigated as a function of the milling duration. Fine grain sizes were analyzed by via X-ray diffraction and scanning electron microscopy, to investigate the influence of the milling duration on the synthesized samples. It was found that microstructural changes, the Seebeck coefficient, and the electrical resistivity of the compounds were highly dependent on the sample milling duration. Additionally, the carrier concentration considerably increased in the samples milled for 6 h; this was attributed to the formation of antisite defects introduced by the accumulated thermal energy. Moreover, the highest value of ZT (=1.05) was achieved at 373K by the 6-h milled samples. The temperature at which the ZT value maximized varied according to the milling duration, which implies that the milling duration of the three thermoelectric composite oxide powders should be carefully optimized for their effective application.

Hydrothermally synthesized Al-doped BiVO4 as a potential antibacterial agent against methicillin-resistant Staphylococcus aureus

  • Vicas, Charles Sundar;Keerthiraj, Namratha;Byrappa, Nayan;Byrappa, Kullaiah
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.566-571
    • /
    • 2019
  • One-pot hydrothermal route was adopted to synthesize Al:BiVO4, at 4 h and 8 h reaction durations, by adding 1% aluminiumoxide powder (w/v) to the precursors. The products were investigated using several characterization techniques that conform a significant morphological change and a decrease in bandgap energy of the materials upon Al modification of scheelite monoclinic bismuth vanadate matrix at both hydrothermal durations. Antibacterial experiments were performed against methicillin-resistant Staphylococcus aureus in visible light condition to harness the photoxidation property of Al-doped BiVO4 and compare to that of unaltered BiVO4. Minimum inhibitory concentration of the synthesized materials was identified. The results indicate that Al-doping on BiVO4 has a significant effect on its photocatalytic antibacterial performance. Al:BiVO4 synthesized at 8 h hydrothermal treatment parades excellent sunlight-driven photocatalysis compared to the one synthesized at 4 h.

Development and Synthesis of La Doped CuO-ZnO-Al2O3 Mixed Oxide (La이 도핑된 CuO-ZnO-Al2O3 복합 산화물의 합성공정개발)

  • Jung, Mie-Won;Lim, Saet-Byeol;Moon, Bo-Ram;Hong, Tae-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • La doped CuO-ZnO-$Al_2O_3$ powders are prepared by sol-gel method with aluminum isopropoxide and primary distilled water as precursor and solvent. In this synthesized process, the obtained metal oxides caused the precursor such as copper (II) nitrate hydrate and zinc (II) nitrate hexahydrate were added. To improve the surface areas of La doped CuO-ZnO-$Al_2O_3$ powder, sorbitan (z)-mono-9-octadecenoate (Span 80) was added. The synthesized powder was calcined at various temperatures. The dopant was found to affect the surface area and particle size of the mixed oxide, in conjunction with the calcined temperature. The structural analysis and textual properties of the synthesized powder were measured with an X-ray Diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller surface analysis (BET), Thermogravimetry-Differential Thermal analysis (TG/DTA), $^{27}Al$ solid state Nuclear Magnetic Resonance (NMR) and transform infrared microspectroscopy (FT-IR). An increase of surface area with Span 80 was observed on La doped CuO-ZnO-$Al_2O_3$ powders from $25m^2$/g to $41m^2$/g.

Shape Control of Platinum Nanoparticles Using a Metal Salt (금속 염을 이용한 백금 나노입자의 형상제어)

  • Kwak, Seoung Yeul;Lee, Jin Ho;Kim, Jin Woo;Jung, Taek Kyun;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.393-397
    • /
    • 2012
  • $AgNO_3$ has the characteristic is controlling the inhibition or promotion of particle growth by adsorbing onto specific facets of platinum nanoparticles. Therefore, in this study, $AgNO_3$ was added to control the shape of platinum nanoparticles during the liquid phase reduction process. Consequently, platinum cubes were synthesized when $AgNO_3$ of 1.1 mol% (with respect to the Pt concentration) was added into the solution. Platinum octahedrons were synthesized when 32 mol% (with respect to the Pt concentration) was added into the solution. These results demonstrate that the metal salt $AgNO_3$, effectively controlled the relative growth rates of each facet of Pt nano particles.