• 제목/요약/키워드: Synthesis condition

검색결과 909건 처리시간 0.027초

Branched DNA-based Synthesis of Fluorescent Silver Nanocluster

  • Park, Juwon;Song, Jaejung;Park, Joonhyuck;Park, Nokyoung;Kim, Sungjee
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1105-1109
    • /
    • 2014
  • While single strand DNAs have been widely used for the scaffold of brightly fluorescent silver nanoclusters (Ag NCs), double strand DNAs have not been as successful. Herein, we report a novel synthetic approach for bright Ag NCs using branched double strand DNAs as the scaffolds for synthesis. X-shaped DNA (X-DNA) and Y-shaped DNA (Y-DNA) effectively stabilized Ag NCs, and both X-DNA and Y-DNA resulted in brightly fluorescent Ag NCs. The concentration and molar ratio of silver and DNA were found important for the fluorescence efficiency. The brightest Ag NC with the photoluminescence quantum efficiency of 19.8% was obtained for the reaction condition of 10 ${\mu}M$ X-DNA, 70 ${\mu}M$ silver, and the reaction time of 48 h. The fluorescence lifetime was about 2 ns for the Ag NCs and was also slightly dependent on the synthetic condition. Addition of Cu ions at the Ag NC preparations resulted in the quenching of Ag NC fluorescence, which was different to the brightening cases of single strand DNA stabilized Ag NCs.

Sodium Flame Encapsulation 방법에 의한 초미립 Ti 분말 합성 및 공정개발 (Synthesis and Process Development of Ultrafine Ti Powder by Sodium Flame Encapsulation Method)

  • 맹덕영;이창규;김흥희
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.391-397
    • /
    • 2002
  • Synthesis and process development of nano-size Ti powder by SFE(Sodium/halide Flame Encapsulation) method were investigated. Four concentric coflow burner was used and its flame configuration was $TiCl_4/Ar/Na/Ar$ in order from the center. Flame has been controlled by the various processing parameters such as temperature of burner and flow rates of both $TiCl_4$(g) precursor and Na(g). It was found that yellow-colored flame was shown in the flow rates of 70cc/min of $TiCl_4$(g) precursor and 2 $\ell$ /min of Na(g) which were regarded as optimum flame condition. The powders encapsuled by NaCl were produced having the average powder size of 250nm. The results of X-ray diffraction showed that powders from the optimized condition consisted of pure Ti and NaCl. TEM analysis confirmed that the several Ti powders of 20-100nm were encapsulated with NaCl. After removing sodium chloride by heat treatment, the spherical Ti powders with the size range of 80 to 150nm were obtained.

나노클레이의 합성 및 나노복합재로의 응용 (Synthesis of Nano-Clay and The Application for Nanocomposite)

  • 정순용;정은일
    • 한국분말재료학회지
    • /
    • 제12권2호
    • /
    • pp.122-130
    • /
    • 2005
  • Layered silicate was synthesized at hydrothermal condition from silica adding to various materials. Nano-clay was synthesized by intercaltion of various amine compounds into synthetic layered silicate. The products were analysed by XRD, SEM, and FT-IR in order to examine the condition of synthesis and intercalation. From the results, it was confirmed that kaolinite was synthesized from precipitated silica and gibbsite at $220^{\circ}C$ during 10 days, and hetorite was synthesized from silica sol at $100^{\circ}C$ during 48 h. Na-Magadiite was synthesized from silica gel at $150^{\circ}C$ during 72 h, and Na-kenyaite was synthesized from silica gel at $160^{\circ}C$ during 84 h. Nano-clay was prepared using synthetic layered silicate intercalated with various amine compounds. Kenyaite was easily intercalated by various organic compounds, and has the highest basal-spacing value among other layered silicates. Basal-spacing was changed according to the length of alkyl chain of amine comopounds. Polymer can be easily intercalated by dispersion with large space of interlayer. Finally, epoxy/nano-clay nanocomposite can be easily prepared.

Emulsion법에 의한 실리카 분말의 합성에서 반응조건이 입자의 형성에 미치는 영향 (The Effect of Reaction Condition on Particle Formation in the Synthesis of Silica Powder Using Emulsion)

  • 이상근;장윤식;문병영;강범수;박희찬
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.717-721
    • /
    • 2005
  • Silica powders were synthesized using emulsion solution containing water, nonionic surfactant of Triton N-57, and cyclohexane. Silica powders were prepared at low cost using inexpensive starting material of sodium silicate and ammonium sulfate. Morphology, size and size distribution were observed and determined using SEM. The powder was identified as silica by FT-IR and XRD analysis. Particle size and size distributions were affected by concentration of reactants, reaction time, and concentration of surfactant. Particle size were increased with increasing concentration of reactants and particles became dense with increasing reaction time. As R value increased, tile particle size was increased, reached a certain value and then decreased again. The silica powders synthesized under optimum condition were spherical in shape, $0.8{\mu}m$ in average particle size, narrow in particles size distribution, and well dispersed.

솔비탄 메타크릴레이트의 효소적 합성 - 반응온도와 아실 공여체의 영향 - (Enzymatic Synthesis of Sorbitan Methacrylate Effect of Reaction Temoerature and Acyl Donor)

  • 정귀택;박은수;변기영;이혜진;김인홍;조영일;김해성;송요순;김도형;류화원;이우태;선우창신;박돈희
    • KSBB Journal
    • /
    • 제19권5호
    • /
    • pp.385-389
    • /
    • 2004
  • In this research, the chemo-enzymatic synthesis of sorbitan methacrylate was investigated to optimize reaction conditions. Firstly, sorbitan was manufactured by sorbitol cyclic reaction in the presence of p-toluenesulfonic acid (p-TSA) as catalyst material. Secondly, sorbitan methacrylate was synthesized by immobilized lipase Novozyme 435 with acyl donors in t-butanol. As a result of enzymatic synthesis of sorbitan methacrylate, the conversion yield reached about $65\%$ in the condition of initial sorbitan conc. 50 g/L, enzyme content $3\%$ (w/v) , molar ratio 1:3, reaction temperature 50^{circ}C and reaction time 42 hrs using methyl methacrylate as acyl donor. Comparing with acyl donors and reaction temperature, the conversion yield reached about 18, 65 and $80\%$ with methacrylic acid, methyl methacrylate and vinyl methacrylate as acyl donor, respectively. And optimum reaction temperature was 60, 50, and 50^{circ}C, respectively

저산소 및 재산소화가 배양된 태아 섬유아세포에 미치는 영향 (Effect of Hypoxia and Reoxygenation on Cultured Human Dermal Fetal Fibroblast)

  • 박병윤;최종우;곽현준;이원재;나동균
    • Archives of Plastic Surgery
    • /
    • 제32권3호
    • /
    • pp.347-356
    • /
    • 2005
  • The wound healing process in fetus is quite different form that of adult. Regeneration plays an important role and scarless wound healing is possible in early gestational fetal period. Recently, the various effects of the hypoxia and reoxygenation in the wound healing process have been investigated by many researchers. The hypoxic state is known to alter protein synthesis and gene expression of TGF-${\beta}$, VEGF. The authors hypothesize there may be differences between fetal and adult fibroblast and this difference may play a possible role in the mechanism of scarless fetal wound healing. In this study, we investigated the growth of fibroblast, the amount of collagen deposition, the amount of protein synthesis and gene expression in TGF-${\beta}$(transforming growth factor-${\beta}$), VEGF(vascular endothelial growth factor) under the various hypoxic and reoxygenation conditions. Through these processes, we tried to determine the relationships between scarless fetal wound healing and hypoxic condition. In control group, fetal and adult fibroblasts were cultured under normoxic condition. The experimental groups were allocated into four different groups. The differences in TGF-beta, VEGF under 24, 48, 72 hours were statistically investigated. Compared to adult fibroblast group, there was a statistically significant increase (p<0.01) in the rates of protein synthesis in TGF-beta and VEGF of fetal fibroblast. In this study, these results may reflect the possibility that fetal fibroblast are more susceptible to change in oxygen and has a superior rate of angiogenesis through increased VEGF expression. The possible superiority of angiogenesis in fetal fibroblast may play an important role in scarless wound healing.

지중 석탄가스화 공정 시뮬레이션을 통한 산화제 주입조건에 따른 합성가스 특성에 대한 연구 (The Study on Synthesis Gas Characteristics Following Different Injection Condition of Oxidizing Agent Through Simulation of Underground Coal Gasification)

  • 장동하;윤상필;김형택;김정규;조원준;주우성;이진욱;이찬
    • 한국가스학회지
    • /
    • 제17권5호
    • /
    • pp.28-36
    • /
    • 2013
  • 에너지 보안의 위기를 타파하기 위한 가장 많은 관심을 가지고 있는 것 중 하나가 지중 속 매장되어 있는 석탄이다. 본 연구에서는 지중에서 석탄을 직접 채굴을 하지 않고 지중 내 석탄 가스화를 직접 진행할 수 있는 지중 석탄가스화 공정에 대하여 화학 반응 공정 모사를 진행하였다. 본 연구는 1980년대 말에 미국의 Rocky Mountain 1 지중 석탄가스화 프로젝트를 참고로 진행을 하여 기본 모델을 완성하였다. 그리고 산화제 주입조건에 따른 민감도 분석을 통하여 합성가스의 조성 결과를 확인하였다. 반응 모델은 건조, 열분해, 촤 가스화로 나누어 모델이 구현되었고 실제 실험값에서의 생산된 가스량, 가스화 된 탄소량, 가스 수율 등의 값으로 결과를 확인하였다.

탄화규소 결정상의 종류가 탄화규소 표면에 ZSM-5가 형성되는데 미치는 영향 (Effect of SiC Crystal Phase on Growing ZSM-5 on the Surface of SiC)

  • 정은진;이윤주;김영희;권우택;신동근;김수룡
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.247-252
    • /
    • 2015
  • ${\alpha}$-상 과 ${\beta}$-상 두 가지 종류의 탄화규소(SiC) 입자 표면에 수열 합성 방법으로 ZSM-5 결정을 형성하였다. SiC는 $50{\mu}m$ 이상이 되는 크기의 입자를 사용하였으며, ZSM-5 결정이 SiC 표면에서부터 성장하도록 유도하기 위하여 합성 단계에 앞서 SiC 표면에 산화층을 형성하였으며, 수열합성 온도와 시간을 변화시켜 보았다. 그 결과 ${\beta}$-SiC는 $900^{\circ}C$ 조건에서도 산화막이 형성되었으며, 특히 $150^{\circ}C$ 합성 조건에서 ZSM-5가 ${\beta}$-SiC 표면에서부터 성장하였음이 뚜렷이 관찰되었다. $200^{\circ}C$ 조건에서는 ZSM-5의 결정의 크기가 성장할 뿐 아니라, 시간의 증가에 따라 결정의 형태가 뚜렷해지고 SiC 표면에 도포되는 양이 증가하는 것을 확인할 수 있었다.

메조포러스실리카를 이용한 메조포러스 전이금속체 합성 (Synthesis of Mesoporous Transition Metal Carbon Using the Mesoporous Silica)

  • 한승동;정의민;이주보;팽메이메이;김대경;장현태
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1915-1922
    • /
    • 2012
  • 본 연구는 SBA-15, MCM-41, MCM-48, KIT-6와 같은 메조포러스실리카를 다양한 조건에서 합성하고 이를 이용하여 CMK(Carbon Mesoporous Korea)를 합성한다. 합성된 CMK를 이용하여 메조포러스 구조의 전이금속체를 제조하였다. 각각의 메조포러스실리카에 따라 합성된 CMK의 특성을 분석하고 이를 이용하여 합성된 메조포러스 전이금속체의 특성을 질소흡탈착 등온선, SEM, 저각 X-선 회절분석으로 분석하므로써 최적의 메조포러스 전이금속체의 합성조건을 도출하였다, 실험 결과 가장 우수한 특성을 나타내는 메조실리카는 SBA-15이며, BET 분석으로 SBA-15로부터 합성된 메조포러스 구리 분자체의 비표면적은 $225m^2/g$, 기공크기는 2.91nm로 나타났다.

폐 반도체 슬러리 및 폐 망간전지 흑연봉으로부터 탄화규소 합성 (Synthesis of SiC from the Wire Cutting Slurry of Silicon Wafer and Graphite Rod of Spent Zinc-Carbon Battery)

  • 손용운;정인화;손정수;김병규
    • 자원리싸이클링
    • /
    • 제12권3호
    • /
    • pp.25-30
    • /
    • 2003
  • 본 연구의 목적은 실리콘웨이퍼의 절단공정에서 발생한 폐슬러리와 폐망간전지에서 발생하는 흑연봉을 각각 규소 및 탄소의 출발물질로 사용하여 가스터빈 부품, 열교환기 등에 사용되는 탄화규소(SiC)를 합성하는 연구를 수행하였다. 실리콘웨이퍼의 절단공정에서 발생하는 폐슬러리로부터 비중차이에 의한 선별과 자력선별 등에 의해 정제된 규소와 탄화규소를 얻을 수 있었으며, 폐망간전지를 해체하여 얻은 탄소봉으로부터 수세와 분쇄를 통하여 탄소분말을 얻을 수 있었다. 탄화규소의 합성은 규소와 당량비의 탄소분발을 혼합하여 1$600^{\circ}C$이상의 온도에서 아르곤 분위기와 진공분위기 하에서 2시간 유지시켰을 때 이루어졌으며, 이때 합성된 탄화규소의 순도는 99% 이상이었다.