• Title/Summary/Keyword: Syngenite

Search Result 3, Processing Time 0.017 seconds

Premature Stiffening of Cement Paste Caused by Secondary Gypsum and Syngenite Formation (False Set)

  • Chung, Chul-Woo;Lee, Jae-Yong
    • Architectural research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • The purpose of this research is to investigate the effect of specific hydration reaction on the stiffening process of cement paste. The cement compositions are manipulated to cause specific hydration reactions (secondary gypsum and syngenite formation) responsible for false set, and the relationship between specific hydration reactions and the flow and stiffening behavior of cement paste were investigated using modified ASTM C 403 penetration resistance measurement and oscillatory shear rheology. X-ray powder diffraction (XRD) was used for the phase identification associated with premature stiffening of cement paste. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were used for verification of syngenite formation. From the results, both secondary gypsum and syngenite formation caused faster stiffening and set. The amount of syngenite produced during 1 hour hydration was approximately 1 % of total mass of the cement paste, but cement paste with syngenite formation showed significantly accelerated stiffening behavior compared to normal cement paste.

The Effects of Alkali Sulfate on the Hydration of a C3A−CaSO4⋅2H2O System

  • Lee, Jong-Kyu;Chu, Yong-Sik;Kwon, Choon-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.471-476
    • /
    • 2007
  • The hydration mechanism of the $3CaO{\cdot}Al_2O_3-CaSO_4{\cdot}2H_2O$ system in the presence of alkali sulfates has been investigated. The early hydration rate of $3CaO{\cdot}Al_2O_3$ was accelerated by the addition of $Na_2SO_4$ and $K_2SO_4$. This is closely related to the formation of syngenite $(CaSO_4{\cdot}K_2SO_4{\cdot}H_2O)$, and the U-phase added $K_2SO_4$ and $Na_SO_4$ in the $3CaO{\cdot}Al_2O_3-CaSO_4{\cdot}2H_2O$ system, respectively. The formation of the rigid syngenite and U-phase structure led to rapid setting and decreases the sulfate content in the liquid phase of the hydrating cement to the extent that it cannot adequately retard the hydration of $3CaO{\cdot}Al_2O_3$. In case of the alkali sulfate not added to the $3CaO{\cdot}Al_2O_3-CaSO_4{\cdot}2H_2O$ system, the ettringite was transformed to monosulfoaluminate immediately after the consumption of gypsum. However, when the alkali sulfates were added to this system, the ettringite did not transform to monosulfoaluminate immediately even though the gypsum was completely consumed. There was a stagnation period to transform to the monosufoaluminate after the consumption of gypsum because the syngenite and U-phase remained as the sulfate source.

Influence of Potassium on the Cement Clinker Formation I. Unstable Free Alkali in Clinker (시멘트 클린커 생성과정에 미치는 Potassium의 영향 I. 불안정 상태의 알칼리)

  • 서일영;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 1985
  • The states of alkali occuring in Portland cement clinker were studied. Potassium was added to raw mixture by there kinds ; $K_2SO_4$, $K_2CO_3$ and KOH. In case of $K_2CO_3$ and KOH addition the new state of unstable alkali was found when alkakli content is high and $SO_3$ content is low in the clinker. Unstable state of highly basic free 4K_2O$ causes lowering burnability much more than alkali sulfate especially at the early stage of burning. Lowered burnability by 4K_2O$ became more serious with higher LSF. Unstable free-4K_2O$ which is readily soluble with water reacts with gypsum to form $Ca(OH)_2$ and syngenite as soon as water is added. As a results the liberation rate of heat of hydration at the early hydration process(1st peak) was increased.

  • PDF