• Title/Summary/Keyword: Syngas Compositions

Search Result 24, Processing Time 0.026 seconds

A Study on the Laminar Burning Velocity of Synthetic Gas of Coal Gasification(H2/CO)-Air Premixed Flames (석탄가스화 합성가스(H2/CO)-공기 예혼합화염의 층류 연소속도에 관한 연구)

  • Jeong, Byeonggyu;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2012
  • Syngas laminar burning velocity measurements were carried out at atmospheric pressure and ambient temperature using the Bunsen flame configuration with nozzle burner as a fundamental study on flame stability of syngas fuel. Representative syngas mixture compositions ($H_2$:CO) such as 25:75%, 50:50% and 75:25% and equivalence ratios from 0.5 to 1.4 have been conducted. Average laminar burning velocities have been determined by the stabilized nozzle burner flames using the angle method, radical surface area method and compared with the data obtained from the other literatures. And the results of each experimental methodologies in the various composition ratios and equivalence ratios were coincided with the result of numerical simulation. Especially, it was confirmed that there was necessary to choice a more accurate measurement methodology even the same static flame method for the various composition ratios of syngas fuel including hydrogen. Also, it was reconfirmed that the laminar burning velocities gradually increased with the increasing of hydrogen content in a fuel mixture.

A Study on the Lift Flame Structure with Composition Ratios in Premixed Impinging Jet Flames of Syngas (H2/CO) (합성가스(H2/CO) 예혼합 충돌 제트화염에서 조성비에 따른 부상 화염구조에 관한 연구)

  • KIM, SEULGI;SIM, KEUNSEON;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.220-229
    • /
    • 2016
  • A numerical study on lifted flame structure in impinging jet geometry with syngas composition ratio was investigated. The numerical calculations including chemical kinetic analysis were conducted using SPIN application of the CHEMKIN Package with Davis-Mechanism. The flame temperature and velocity profiles were calculated at the steady state for one-dimensional stagnation flow geometry. Syngas mixture compositions were adjusted such as $H_2:CO=10:90(10P)$, 20 : 80 (20P), 30 : 70 (30P), 40 : 60 (40P), 50 : 50 (50P). As composition ratios are changed from 10P to 50P, the axial velocity and flame temperature increase because the contents of hydrogen that have faster burning velocity increase. This phenomenon is due to increase in good reactive radicals such as H, OH radical. As a result of active reactivity, the burning velocity is more faster and this is confirmed by numerical methods. Consequently, combustion reaction zone was moved to burner nozzle.

A Study on the Combustion Characteristics of a Generator Engine Running on a Mixture of Syngas and Hydrogen (발전용 합성가스 엔진의 수소 혼합 비율에 따른 연소 특성 연구)

  • Park, Seung-Hyun;Park, Cheol-Woong;Lee, Sun-Youp;Kim, Chang-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.693-699
    • /
    • 2011
  • Internal combustion engines running on syngas, which can be obtained from biomass or organic wastes, are expected to be one of the suitable alternatives for power generation, because they are environment-friendly and do not contribute to the depletion of fossil fuels. However, syngas has variable compositions and a lower heating value than pure natural gas, owing to which the combustion conditions need to be adjusted in order to achieve stable combustion. In this study, a gas that has the same characteristics as syngas, such as low heating value (LHV), was produced by mixing $N_2$ with compressed natural gas (CNG). In addition, this study investigates the combustion characteristics of syngas when it is mixed with hydrogen in a ratio ranging from 10% to 30% with a constant LHV of total gas.

A study on the laminar burning velocity according to the H2 content variation in a large range of equivalence ratio of syngas(H2/CO)-air premixed flames (넓은 당량비 구간에서 수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 층류연소속도에 관한 연구)

  • Jeong, Byeong-Gyu;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.215-218
    • /
    • 2012
  • In this study, syngas laminar burning velocities with various hydrogen contents were studied using both experimental measurements and kinetic simulations. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including burning velocities were made using CHEMKIN Package with USC-Mech II. A large range of syngas mixture compositions such as 10:90%, 25:75%, 50:50%, 75:25% and equivalence ratio from lean condition of 0.5 to rich condition of 5.0 have been conducted. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increasing of $H_2$ content although the flame speed of hydrogen is faster about ten times than carbon monoxide. This phenomenon is attributed to the rapid production of the hydrogen related radicals such as H and OH at the early stage of combustion, which is confirmed the linear increasing of radical concentrations on kinetic simulation.

  • PDF

Effects of Preferential Diffusion on Downstream Interaction in Premixed $H_2$/CO Syngas-air Flames (상호작용하는 $H_2$-CO 예혼합 화염에서 $H_2$선호확산의 영향에 관한 수치적 연구)

  • Oh, Sanghoon;Park, Jeong;Kwon, Ohboong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.17-29
    • /
    • 2012
  • The effects of strain rate and preferential diffusion of $H_2$ on flame extinction are numerically studied in interacting premixed syngas-air flames with fuel compositions of 50% $H_2$ + 50% CO and 30% $H_2$ + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. $a_g=30s^{-1}$ and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of $H_2$ cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of $H_2$ and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.

A Study on the Laminar Burning Velocity and Flame Structure with H2 Content in a Wide Range of Equivalence Ratio of Syngas(H2/CO)/Air Premixed Flames (넓은 당량비 구간에서 수소함유량에 따른 합성가스(H2/CO)/공기 예혼합화염의 연소속도 및 화염구조에 관한 연구)

  • Jeong, Byeong-Gyu;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.17-28
    • /
    • 2014
  • In this study, the laminar burning velocity of syngas fuel($H_2/CO$) and flame structure with various hydrogen contents were studied using both experimental measurements and detailed kinetic analysis. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including chemical kinetic analysis were made using CHEMKIN Package with USC-Mech II. A wide range of syngas mixture compositions such as $H_2$ : CO = 10 : 90, 25 : 75, 50 : 50, 75:25 and equivalence ratios from lean condition of 0.5 to rich condition of 5.0 have been considered. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increment of $H_2$ content although the burning velocity of hydrogen is faster than the carbon monoxide above 10 times. This phenomenon is attributed to the rapid production of hydrogen related radicals such as H radical at the early stage of combustion, which is confirmed the linear increase of radical concentrations on kinetic analysis. Particular concerns in this study are the characteristics of burning velocity and flame structure different from lean condition for rich condition. The decrease of OH radicals and double peaks are observed with $H_2$ content in rich condition once $H_2$ fraction exceeds over threshold.

Engineering Status of Gasification Plant in 300MW IGCC and Performance Prediction of Gasification Block (300MW급 IGCC 가스화 플랜트의 엔지니어링 현황 및 가스화 블록 성능예측)

  • Kim, Youseok;Kim, Bongkeun;Paek, Minsu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.130.1-130.1
    • /
    • 2010
  • 미국과 유럽에서는 이미 10여 년 전부터 250MW급 이상의 대용량 석탄IGCC 플랜트를 상업운전 하고 있으며, 일본과 중국을 비롯한 아시아에서도 대용량 플랜트를 시운전하고 있거나 건설 중에 있다. 한국에서는 제4차 전력수급계획에 의거 태안화력 부지 내에 300MW급 IGCC 플랜트 건설을 추진 중이며, 두산중공업은 '10년 상반기에 IGCC 가스화 플랜트에 대한 FEED 설계 (Front-Eng Engineering Design)를 완료하였다. 그 과정 중 설계조건에 의한 기본 엔지니어링 사항과 석탄 가스화 플랜트에 대한 성능예측 결과를 본 연구에서 소개한다. 가스화 플랜트의 엔지니어링은 가스화 블록과 가스정제 블록으로 구분하여 수행하였다. Process Data를 이용하여 PFD Development, P&ID Generation, Equipment Specification 개발, HAZOP 수행, Architecture Engineering 등의 순으로 FEED 설계를 진행하였다. BOD (Basis of Design)를 기준으로 운전조건별 Heat & Mass Balance와 Process Flow를 재검토하고 각 기기별 운전개념을 반영하여 P&ID를 개발하였다. 그리고 배관, 전기 및 제어에 대한 각종 Diagram 개발과 HSE (Health, Safety and Environment) 관련 설계를 수행하였다. IGCC 1호기의 엔지니어링 수행과 함께 Next 호기 자체설계 역량 확보를 위해 두산중공업은 'DIGITs'로 명명된 개념기본설계 Tool을 개발하고 있다. DIGITs는 공정모델링, 단위기기 개념설계, 공정구성 (Process Configuration) 및 종합 Database Package 형태로 구성된다. DIGITs에 의한 계산 결과 공정사 Process Data 기준시 가스화 블록 출구에서 Syngas HHV와 Syngas 현열은 각각 약 $636MW_{th}$와 약 $18MW_{th}$로, Plant 설계조건 $630MW_{th}$를 만족하는 것으로 예측되었다. 향후 DIGITs는 가스정제 블록 및 주변 BOP 설비 등과 연계한 종합 개념기본설계 Tool로써 개발 진행 중이다.

  • PDF

Performance Estimation and Process Selection for Chemical-Looping Hydrogen Generation System (금속매체 순환식 수소생산 시스템의 성능예측 및 공정선정)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.209-218
    • /
    • 2005
  • To find a suitable metal component in oxygen carrier particles for chemical-looping hydrogen generation system(CLH), oxygen transfer capacities of metal components were compared and Ni has been selected as the best metal component. The proper operating conditions to achieve high hydrogen generation rate have been investigated based on the chemical-equilibrium composition analysis for water splitting reactor. Moreover, suitable compositions of syngas from gasifier of heavy residue to achieve high energy efficiency have been investigated by calculation of heat of reaction. Based on the selected operating conditions, the best configuration of two interconnected fluidized beds system for the chemical-looping hydrogen generator has been investigated as well.

Techno-Economic Analysis of Methanol to Olefins Separation Processes (메탄올을 이용한 올레핀 생산 분리공정의 기술 및 경제성 분석)

  • Park, Jonghyun;Jeong, Youngmin;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Light olefins are important petrochemicals as well as primary building blocks for various chemical intermediates. As the number of ethane cracking center (ECC) process, in which ethylene accounts for most of the production, has increased in recent years, propylene supply is not catching up with steadily increasing propylene demand. This trend makes the conversion of methanol to olefins to get more industrial importance. The methanol to olefins (MTO) process produces methanol through syngas and obtain olefins such as propylene through methanol. Since the reaction from methanol to olefins provides different product compositions depending on the catalyst used for the reaction, it is important to choose an appropriate separation process for the reaction product with different composition. Four different separation processes are considered for four representative cases of product compositions. The separation processes for the reaction products are evaluated by techno-economic analysis based on the simulation results using Aspen plus. Guidelines are provided for selecting a suitable separation process for each of representative case of product compositions in the MTO process.

CO Conversion Characteristics of WGS Catalysts for SEWGS System (SEWGS 시스템을 위한 WGS 촉매들의 CO 전환 특성)

  • Ryu, Hojung;Park, Jihye;Lee, Dongho;Park, Jaehyeon;Bae, Dalhee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Reactivity of commercial WGS catalyst and four new catalysts(RMC-3, PC-73, PC-67SU, PC-59) manufactured with various compositions by Korea Electric Power Research Institute(KEPCO RI) were compared to select suitable WGS catalyst for SEWGS system. Steam/CO ratio, gas velocity, flow rates of syngas, and temperature were considered as operating variables. As a result, commercial catalyst showed the highest CO conversion and RMC-3 catalyst showed also high CO conversion. Therefore, commercial and RMC-3 catalysts were selected as applicable catalysts. However, PC-73 catalyst showed low CO conversion at low temperature($200^{\circ}C$) but showed good reactivity at high temperature($225{\sim}250^{\circ}C$), and therefore, PC-73 catalyst was selected as applicable catalyst for high temperature operation. Continuous operations up to 24 hours for those three catalysts(commercial, RMC-3, PC-73) were conducted to check reactivity decay of catalysts. All three catalysts maintained their original reactivity.