• 제목/요약/키워드: Synchrotron x-ray techniques

검색결과 25건 처리시간 0.019초

Single-Crystal Structures of Li+-exchanged Zeolite X (FAU, Si/Al = 1.09) from Aqueous Solution Depends on Ion-exchange Temperatures at 293 and 333 K

  • Kim, Hu-Sik;Ko, Seong-Oon;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3303-3310
    • /
    • 2012
  • Two single crystals of fully dehydrated partially $Li^+$-exchanged zeolite X were prepared by the exchange of Na-X, $Na_{92}Si_{100}Al_{92}O_{384}$ (Si/Al = 1.09), with $Li^+$ using aqueous 0.1 M $LiNO_3$ at 293 (crystal 1) and 333 K(crystal 2), followed by vacuum dehydration at 623 K and $1{\times}10^{-6}$ Torr for 2 days. Their structures were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group $Fd{\overline{3}}$ at 100(1) K. Their structures were refined using all intensities to the final error indices (using the 1281 and 883 reflections for which ($F_o$ > $4{\sigma}(F_o)$) $R_1/R_2$ = 0.075/0.244 and 0.074/0.223 for crystals 1 and 2, respectively. Their compositions are seen to be ${\mid}Li_{86}Na_6{\mid}[Si_{100}Al_{92}O_{384}]$-FAU and ${\mid}Li_{87}Na_5{\mid}[Si_{100}Al_{92}O_{384}]$-FAU, respectively. In crystal 1, 17 $Li^+$ ions per unit cell are at site I', 15 another site I', 30 at site II, and the remaining 16 at site III; 2 $Na^+$ ions are at site II and the remaining 4 at site III'. In crystal 2, 32 and 30 $Li^+$ ions per unit cell fill sites I' and II, respectively, and the remaining 25 at site III'; 2 and 3 $Na^+$ ions are found at sites II and III', respectively. The extent of $Li^+$ exchange increases slightly with increasing ion exchange temperature from 93% to 95%.

Characterization of Li+-ion Exchanged Zeolite Y using Organic Solvents

  • Kim, Hu Sik;Lee, Seok Hee;Park, Kyun Hye;Park, Yong Hyun;Park, Jun Woo;Hwang, Ji Hyun;Park, Jong Sam;Choi, Sik Young;Lim, Woo Taik
    • 한국토양비료학회지
    • /
    • 제48권3호
    • /
    • pp.180-188
    • /
    • 2015
  • To investigate the tendency of $Li^+$ exchange from polar organic solvents, $Li^+$-ion exchange into zeolite Y (Si/Al = 1.56) was attempted by undried methanol (crystal 1) and formamide (crystal 2) solvent. Two single crystals of Na-Y were treated with 0.1 M LiNO3 in each of the two solvents at 323 K, followed by vacuum dehydration at 723 K. Their structures were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group $Fd{\bar{3}}m$, at 100(1) K. In both structures, $Li^+$ for $Na^+$ ions filled preferentially sites I' and II. The remaining $Na^+$ ions occupied sites I', II, and III' in both structures, in additional to above sites, and $Na^+$ ions occupied site I in crystal 2. While the 68 % exchange of $Li^+$ for $Na^+$ was achieved from undried methanol, only 40 % exchange was observed from undried formamide, indicating that the undried methanol was more effective than undried formamide as solvent for $Li^+$ exchange under the conditions employed.

The Effect of Co2+-Ion Exchange Time into Zeolite Y (FAU, Si/Al = 1.56): Their Single-Crystal Structures

  • Seo, Sung Man;Kim, Hu Sik;Chung, Dong Yong;Suh, Jeong Min;Lim, Woo Taik
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.243-249
    • /
    • 2014
  • Three single crystals of fully dehydrated $Co^{2+}$-exchanged zeolite Y (Si/Al = 1.56) were prepared by the exchange of $Na_{75}$-Y ($|Na_{75}|[Si_{117}Al_{75}O_{384}]$-FAU) with aqueous streams 0.05 M in $Co(NO_3)_2$, pH = 5.1, at 294 K for 6 h, 12 h, and 18 h, respectively, followed by vacuum dehydration at 673 K. Their single-crystal structures were determined by synchrotron X-ray diffraction techniques in the cubic space group Fd3m at 100(1) K. They were refined to the final error indices $R_1/wR_2$ = 0.0437/0.1165, 0.0450/0.1228, and 0.0469/0.1278, respectively. Their unit-cell formulas are $|Co_{29.1}Na_{11.8}H_{5.0}|[Si_{117}Al_{75}O_{384}]$-FAU, $|Co_{29.8}Na_{11.0}H_{4.4}|[Si_{117}Al_{75}O_{384}]$-FAU, and $|Co_{30.3}Na_{9.5}H_{4.9}|[Si_{117}Al_{75}O_{384}]$-FAU, respectively. In all three crystals, $Co^{2+}$ ions occupy sites I, I' and II; $Na^+$ ions are also at site II. The tendency of $Co^{2+}$ exchange slightly increases with increasing contact time as $Na^+$ content and the unit cell constant of the zeolite framework decrease.

Single-Crystal Structure of |Li50Na25|[Si117Al75O384]-FAU

  • Kim, Hu Sik;Suh, Jeong Min;Kang, Jum Soon;Lim, Woo Taik
    • 대한화학회지
    • /
    • 제57권1호
    • /
    • pp.12-19
    • /
    • 2013
  • The single-crystal structure of fully dehydrated partially $Li^+$-exchanged zeolite Y, ${\mid}Li_{50}Na_{25}{\mid}[Si_{117}Al_{75}O_{384}]$-FAU, was determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group $Fd\bar{3}m$ at 100(1) K. Ion exchange was accomplished by flowing stream of 0.1 M aqueous $LiNO_3$ for 2 days at 293 K, followed by vacuum dehydration at 623 K and $1{\times}10^{-6}$ Torr for 2 days. The structure was refined using all intensities to the final error indices (using only the 801 reflections with ($F_o$ > $4{\sigma}(F_o)$) $R_1/R_2=0.043/0.140$. The 50 $Li^+$ ions per unit cell are found at three different crystallographic sites. The 19 $Li^+$ ions occupy at site I' in the sodalite cavity: the $Li^+$ ions are recessed 0.30 ${\AA}$ into the sodalite cavity from their 3-oxygens plane (Li-O = 1.926(5) ${\AA}$ and $O-Li-O=117.7(3)^{\circ}$). The 20 $Li^+$ ions are found at site II in the supercage, being recessed 0.23 ${\AA}$ into the supercage (Li-O = 2.038(5) ${\AA}$ and $O-Li-O=118.7(3)^{\circ}$). Site III' positions are occupied by 11 $Li^+$ ions: these $Li^+$ ions bind strongly to one oxygen atom (Li-O = 2.00(8) ${\AA}$). About 25 $Na^+$ ions per unit cell are found at four different crystallographic sites: 4 $Na^+$ ions are at site I, 5 at site I', 12 at site II, and the remaining 4 at site III'.

Na+ 경쟁이온이 존재하는 수용액에서 Zeolite A 내 Sr2+ 이온의 선택성 및 분포에 관한 결정학적 연구 (Crystallographic Study on the Selectivity and Distribution of Sr2+ Ions Within Zeolite A In the Presence of Competing Na+ Ions in Aqueous Exchange Solution)

  • 김후식;박종삼;임우택
    • 광물과 암석
    • /
    • 제35권1호
    • /
    • pp.41-50
    • /
    • 2022
  • 이온교환 용액내 Na+ 이온의 몰농도 증가에 따른 zeolite A의 Sr2+ 이온교환 특성을 연구하기 위하여, Sr2+ 및 Na+ 이온으로 교환된 4개의 zeolite A 단결정을 혼합 이온교환 용액을 이용하여 회분법으로 준비하였다. 이들 이온교환용액의 전체 몰농도는 0.05 M이며, Sr(NO3)2:NaNO3 몰비는 각각 1:1(crystal 1), 1:100(crystal 2), 1:250(crystal 3), and 1:500(crystal 4) 이다. 이들 단결정은 623 K와 1×10-4 Pa의 진공하에서 2 일간 탈수 시켰다. 이들의 구조는 단결정 싱크로트론 X-선 회절법으로 입방공간군 Pm3-m을 사용하여 해석하였으며 crystals 1, 2, 3 및 4의 최종 오차 인자를 각각 0.047/0.146, 0.048/0.142, 0.036/0.128, and 0.040/0.156로 정밀화하였다. Crystal 1과 2에서는 6개의 Sr2+ 이온이 결정학적으로 서로 다른 3개의 위치에서 발견되었다. Crystal 3에서는 1개의 Sr2+ 이온과 10개의 Na+ 이온이 large cavity와 sodalite 내부에서 발견 되었다. Crystal 4 에서는 단지 12개의 Na+ 이온만이 3개의 서로 다른 결정학적 자리에 점유하고 있었다. Sr2+ 이온의 이온교환율은 초기 Na+ 이온의 농도가 증가하고 Sr2+ 이온의 농도가 감소함에 따라 100에서 16.7 및 0%로 급격하게 감소 하였다. 또한, Sr2+ 이온 교환률이 감소 함에 따라 제올라이트 골격의 단위 격자 상수 값이 갑소 하였다.