• Title/Summary/Keyword: Synchrotron Radiation

Search Result 215, Processing Time 0.06 seconds

The Spectral Sharpness Angle of Gamma-ray Bursts

  • Yu, Hoi-Fung;van Eerten, Hendrik J.;Greiner, Jochen;Sari, Re'em;Bhat, P. Narayana;Kienlin, Andreas von;Paciesas, William S.;Preece, Robert D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.109-117
    • /
    • 2016
  • We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23−18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.

Study of synchrotron photons by the Prototype Synchrotron Radiation Detector in the space

  • Park, Wung-Hoa;Lee, Man-Woo;Kim, Kyung-Suk;Kim, Guin-Yun;Yang, Jong-Man;Son, Dong-Chul
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.23.1-23.1
    • /
    • 2008
  • A space shuttle with a Prototype Synchrotron Radiation Detector (PSRD) was launched in 2001. PSRD was set in the Endeavour payloads and got data for 12 days. The purpose of PSRD is to measure synchrotron photons which are created by high energy charged particles near earth. Synchrotron photons are confused with background photons. We studied how to separate synchrotron photons from backgrounds.

  • PDF

Preliminary Radiological Considerations for X-ray Free Electron Laser Project at PAL

  • Lee, Hee-Seock;Hong, Suk-Mo;Kim, Min-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.1190-1191
    • /
    • 2004
  • New $4^{th}$ generation synchrotron facility, XFEL, is almost similar to previous $3^{rd}$ generation synchrotron facility in the view of radiological aspects and most important positions are a dump and synchrotron radiation beam line. In this paper, tile radiation protection solutions for them and undulator are suggested and discussed.

  • PDF

Manufacturing of Micromolds for Plastic Molding Technologies via Synchrotron LIGA Process (방사광 LIGA 공정을 이용한 플라스틱 성형용 마이크로 금형 제작)

  • Lee, Bong-Kee;Kim, Jong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • In the present study, copper micromolds with a microhole array were precisely manufactured by a synchrotron LIGA process. Like in the traditional LIGA process, a deep X-ray lithography based on a synchrotron radiation was employed as the first manufacturing step. Due to the excellent optical performance of the synchrotron X-ray used, cylindrical micropillar arrays with high aspect ratio could be efficiently obtained. The fabricated microfeatures were then used as a master of the subsequent copper electroforming process, thereby resulting in copper micromolds with a microhole array. Thermoplastic hot embossing experiments with the copper micromolds were carried out for imprinting cylindrical microfeatures onto a polystyrene sheet. Through the hot embossing, the effect of embossing temperature and usefulness of the present manufacturing method could be verified.

High pressure X-ray diffraction study on a graphite using Synchrotron Radiation (고압하에서 방사광을 이용한 흑연에 대한 연구)

  • Kim, Young-Ho;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1994
  • High pressure X-ray diffraction study was carried out on a graphite to investigate its compressibility as well as any possible phase transition to the hexagonal diamond structure at room temperature. Energy dispersive X-ray diffraction method was introduced using a Mao-Bell type diamond anvil cell with Synchrotron Radiation. Polycrystalline sodium chloride was compressed together with graphite for the high pressure determinations. Because of the poor resolution of the X-ray diffraction pattern of graphite, its compressibility was estimated to be almost same as that of NaCl by graphite (002) X-ray diffraction peak only. An observation of any new peak from a possible hexagonal diamond phase seems very unplausible for its definite identification based on the present data. Alternative approaches such as an Wiggler Radiation source as well as a Large Volume high pressure apparatus will be necessary for the detailed studies on a graphite in future.

  • PDF

Understanding spin configuration in the geometrically frustrated magnet TbB4: A resonant soft X-ray scattering study

  • Huang, H.;Jang, H.;Kang, B.Y.;Cho, B.K.;Kao, C.C.;Liu, Y.J.;Lee, J.S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1205-1211
    • /
    • 2018
  • The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration (i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the $TbB_4$ compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon cooling down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Our results and their implications would further shed a light on the search for possible realization of QSL.

Evaluation of image acquisition using synchrotron radiation in CMOS sensor. (Synchrotron Radiation을 이용한 CMOS sensor image 획득평가)

  • Kim, D.H.;Park, J.K.;Choi, J.Y.;Chang, G.W.;Youn, G.J.;Moon, C.W.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.396-399
    • /
    • 2003
  • In this paper, the purpose is to develop imaging technique of synchrotron radiation using CMOS image sensor. The detector using hybrid method to be research in this lab was used, in order to increase image signal. We made experiments with 1B2 Whitebeam/microprobe beamline in PAL (Pohang Accelerator Laboratory). Phosphor materials such as ZnS:(Ag,Li), ZnS:(Cu,Al), $Y_2O_2S:Eu$ were produced by spin coating on glass. Synchrotron radiation images were acquired and evaluated from monochromatic light from monochromoator in PAL 1B2line. From obtained object and phantom, MTF was 0.15 in ZnS:(Ag,Li) phosphor, and 0.178 in ZnS:( Cu,Al) at 151p/mm. MTFs were unsystematic because thickness of phosphor and uniformity of surface were not optimized. It's expected to improve MTF and the qualify of images as uniformity's optimized.

  • PDF

Beamline Automation of RIKEN Structural Genomics Beamlines

  • Ida, Koh;Yamamoto, Masaki;Kumasaka, Takashi;Ueno, Go;Kanda, Hiroyuki;Miyano, Masashi;Ishikawa, Tetsuya
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.463-465
    • /
    • 2002
  • RIKEN Structural Genomics Beamlines have been constructed for the crystallographic analysis in the structural genomics research at synchrotron radiation facility SPring-8. Synchrotron radiation accelerates the crystallographic analysis of protein structure. The target of the research and development is focused on the automatic beamline operation to maximize beamline efficiency. We are developing the sample management system, which is composed of the sample auto-changer and the database system, for high-throughput data collection. The sample management system and the beamline operating system make it possible to execute automatic data collection without any operators. The beamlines will be ready for user operation in autumn 2002. The concept of automatic beamline operation and the present status of RIKEN Structural Genomics Beamlines will be presented.

  • PDF