• Title/Summary/Keyword: Synchronous reference frame

Search Result 176, Processing Time 0.023 seconds

New Sensorless Vector Control for Permanent Magnet Synchronous Motor using instantaneous Reactive Power (순시 무효전력을 이용한 영구자석 동기전동기의 센서리스 제어)

  • Jun, Byoung-Ho;Choi, Yang-Kwang;Kim, Young-Seok;Shin, Jae-Wha;Han, Yoon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.970-972
    • /
    • 2003
  • This paper presents a new speed sensorless control method of a permanent magnet synchronous motor based on instantaneous reactive power. The proposed algorithm is constructed by instantaneous reactive power in a synchronously rotating reference frame and is not affected by mechanical motor parameters, because mechanical equation is not used. The effectiveness of the proposed system is confirmed by the experimental results.

  • PDF

Speed Sensorless Control for Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power and a Fuzzy PI Compensator (순시무효전력과 퍼이 이득 보상기를 이용한 IPMSM의 속도 센서리스 제어)

  • Kang, Hyoung-Seok;Shin, Jae-Hwa;You, Wan-Sik;Kang, Min-Hyoung;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.173-174
    • /
    • 2007
  • In this paper, a new speed sensorless control based on an instantaneous reactive power and a fuzzy PI compensator are proposed for the interior permanent magnet synchronous motor (IPMSM) drives. The conventional fixed gain PI and PID controllers are very sensitive to step change of command speed, parameter variations and load disturbance. Also, to the estimated speeds are compensated by using an instantaneous reactive power in synchronously rotating reference frame. In a fuzzy compensator, the system control parameters are adjusted by a fuzzy rule based system, which is a logical model of the human behavior for process control. The effectiveness of algorithm is confirmed by the experiments.

  • PDF

An Efficient Control Strategy Based Multi Converter UPQC using with Fuzzy Logic Controller for Power Quality Problems

  • Paduchuri, Chandra Babu;Dash, Subhransu Sekhar;Subramani, C.;Kiran, S. Harish
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.379-387
    • /
    • 2015
  • A custom power device provides an integrated solution to the present problems that are faced by the utilities and power distribution. In this paper, a new controller is designed which is connected to a multiconverter unified power quality conditioner (MC-UPQC) for improving the power quality issues adopted modified synchronous reference frame (MSRF) theory with Fuzzy logic control (FLC) technique. This newly designed controller is connected to a source in order to compensate voltage and current in two feeders. The expanded concept of UPQC is multi converter-UPQC; this system has a two-series voltage source inverter and one shunt voltage source inverter connected back to back. This configuration will helps mitigate any type of voltage / current fluctuations and power factor correction in power distribution network to improve power quality issues. In the proposed system the power can be conveyed from one feeder to another in order to mitigate the voltage sag, swell, interruption and transient response of the system. The control strategies of multi converter- UPQC are designed based on the modified synchronous reference frame theory with fuzzy logic controller. The fast dynamics response of dc link capacitor is achieved with the help of Fuzzy logic controller. Different types of fault conditions are taken and simulated for the analysis and the results are compared with the conventional method. The relevant simulation and compensation performance analysis of the proposed multi converter-UPQC with fuzzy logic controller is performed.

A Study on Over Current Protection Method of Unified Power Quality Conditioners (통합 전력품질 제어기의 과전류 보호방법에 관한 연구)

  • 이우철;김한정
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2002
  • A protection scheme for Unified Power Quality Conditioner (UPQC) is presented and analyzed in this paper. The proposed UPQC has the series active power filter operated as a high impedance k($\Omega$) to the fundamentals when the over current occurs in the power distribution system, and three control strategies are proposed in this paper. The first is the method by detecting the fundamental source current through the p-q theory,[1] the second is the method by detecting the fundamental component of load current in Synchronous Reference Frame(SRF) and the third is the method by detecting the input voltage. When the over current occurs in the power distribution system, the proposed scheme protects the UPQC without additional protection circuits. The validity of proposed protection scheme is investigated through simulation results.

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

Control of Railway Power Quality Conditioner for AC Electrified Railway Systems (교류 전기철도 급전시스템을 위한 철도용 전기품질 보상장치의 제어방법)

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.48-54
    • /
    • 2010
  • The AC electrified railway systems have the power quality problems such as the harmonic distortion, the reactive power and the three-phase imbalance because of the electrical load characteristics of locomotives, which are non-linear single-phase. These power quality problems have a bad effect on not only AC electrified railway systems but also other electric systems connected together. The RPQC (railway power quality conditioner) can compensate such power quality problems in the AC electrified railway systems. In this paper, a novel RPQC control method based on SRF (synchronous-reference-frame) control is proposed. The proposed RPQC control method can compensate effectively the harmonic currents, the reactive power and the load imbalance. The validity and the effectiveness of the proposed RPQC control method are illustrated through the simulations.

Analysis and Control of Instantaneous Voltage Compensator Using New Phase Angle Detection Method Synchronized by Positive Sequence of Unbalanced 3-Phase Source (3상 불평형 전원 시스템의 새로운 위상각 검출기법을 이용한 순간전압보상기의 해석 및 제어)

  • 이승요;고재석;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.275-284
    • /
    • 1999
  • Unbalanced source voltage in the 3-phase power system is decomposed into positive, negative and zero sequence c components. Also, assuming there is no neutral path in the system, the zero sequence component is not shown on the l load side. Therefore, in the unbalanced power system without neutral path. it is possible to provide balanced voltage to t the load side by compensating negative sequence component and also to regulate the voltage amplitude by controlling t the positive sequence component. In addition, the symmetrical components due to voltage unbalance can be effectively d detected on the synchronous reference frame by using dlongleftarrowq transformation. In this paper, an algorithm not only c compensating unbalanced source voltage by canceling the negative sequence component on the synchronous reference f frame but also maintaining load voltages constantly is proposed. Also a novel method for phase angle detection s synchronized by positive sequence component under unbalanced source voltage is suggested and this detected phase a angle is used for d-q transformation. The performances and characteristics of the proposed compensating system are a analyzed by simulation and verified through experimental results.

  • PDF

Sensorless Speed Control and Starting Algorithm using Current Control of SPM Synchronous Motor (영구자석 표면부착형 동기전동기의 전류제어기를 이용한 센서리스 기동방법 및 속도제어)

  • Baik, In-Cheol;Lee, Ju-Suk;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.523-529
    • /
    • 2013
  • A sensorless speed control of a permanent magnet synchronous motor(PMSM) which utilizes MRAS based scheme to estimate rotor speed and position is presented. Considering an error between real and estimated rotor position values, a state equation of PMSM in the synchronous d-q reference frame is represented. A state equation of model system which uses estimated speed and nominal parameter values is expressed. To minimize the errors between the derivatives of d-q axis currents of real and model system, MRAS based adaptation mechanisms for the estimation of rotor speed and position are derived. On the other hand, for the acceleration stage of motor just before the sensorless operation, an acceleration scheme using only d-axis current control is proposed. To show the validity of the proposed scheme, experimental works are carried out and evaluated. During acceleration stage, the acceleration scheme using only d-axis current command shows good acceleration performance and controlled current level. For the sensorless operation, at low speed (5% of rated speed), a good performance is observed.

Modeling and Control of IGBT Converter-Based High-Voltage Direct Current System

  • Kim, Hong-Woo;Ko, Suk-Whan;An, Hae-Joon;Jang, Gil-Soo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.97-104
    • /
    • 2011
  • This paper presents modeling and control for the emerging IGBT converter-based high-voltage direct-current system (IGBT-HVDC). This paper adds to the representation of the IGBT-HVDC system in the dq-synchronous reference frame and its decoupled control scheme. Additionally, since the IGBT-HVDC is able to actively support the grid due to its capacity to control independently active and reactive power production, a reactive power control scheme is presented in order to regulate/contribute to the voltage at a remote location by taking into account its operational state and limits. The ability of the control scheme is assessed and discussed by means of simulations using ahybrid power system, which consists of a permanent magnetic synchronous-generator (PMSG) based wind turbine, an IGBT-HVDC, and a local load.

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.