• Title/Summary/Keyword: Synchronous motors

Search Result 433, Processing Time 0.033 seconds

Control of Electrically Excited Synchronous Motors with a Low Switching Frequency

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng;Fu, Xiao
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.615-622
    • /
    • 2012
  • The switching frequency of the power electronic devices used in large synchronous motor drives is usually kept low (less than 1 kHz) to reduce the switching losses and to improve the converter power capability. However, this results in a couple of problems, e.g. an increase in the harmonic components of the stator current, and an undesired cross-coupling between the magnetization current component ($i_m$) and the torque component ($i_t$). In this paper, a novel complex matrix model of electrically excited synchronous motors (EESM) was established with a new control scheme for coping with the low switching frequency issues. First, a hybrid observer was proposed to identify the instantaneous fundamental component of the stator current, which results in an obvious reduction of both the total harmonic distortion (THD) and the low order harmonics. Then, a novel complex current controller was designed to realize the decoupling between $i_m$ and $i_t$. Simulation and experimental results verify the effectiveness of this novel control system for EESM drives.

Design Optimization of Linear Synchronous Motors for Overall Improvement of Thrust, Efficiency, Power Factor and Material Consumption

  • Vaez-Zadeh, Sadegh;Hosseini, Monir Sadat
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.105-111
    • /
    • 2011
  • By having accurate knowledge of the magnetic field distribution and the thrust calculation in linear synchronous motors, assessing the performance and optimization of the motor design are possible. In this paper, after carrying out a performance analysis of a single-sided wound secondary linear synchronous motor by varying the motor design parameters in a layer model and a d-q model, machine single- and multi-objective design optimizations are carried out to improve the thrust density of the motor based on the motor weight and the motor efficiency multiplied by its power factor by defining various objective functions including a flexible objective function. A genetic algorithm is employed to search for the optimal design. The results confirm that an overall improvement in the thrust mean, efficiency multiplied by the power factor, and thrust to the motor weight ratio are obtained. Several design conclusions are drawn from the motor analysis and the design optimization. Finally, a finite element analysis is employed to evaluate the effectiveness of the employed machine models and the proposed optimization method.

Optimal current angle control method of interior permanent magnet Synchronous Motors (매입형 영구자석 동기전동기의 최적 전류각 제어)

  • 김명찬;김종구;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

Comparison between Asynchronous and Synchronous Linear Motors as to Thermal Behavior

  • Eun, In-Ung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.61-68
    • /
    • 2001
  • A linear motor has a lot of advantages in comparison with conventional feed mechanisms: high transitional speed, acceleration, high control performance and good positioning at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has along lifetime and is easy to assemble. Recently, the two types of linear motors, asynchronous and synchronous linear motors, are often applied to machine tools as a fast feed mechanism. In this paper, a comparison between the two types of linear motors as to power loss and thermal behavior is made. The heat sources of the linear motor-the electrical power loss in the motor and the frictional heat on the linear guidance-are measured and compared. Also, the temperature on the linear motor and machine structure is measured and presented.

  • PDF

Design and Evaluation of a Multi-layer Interior PM Synchronous Motor for High-Speed Drive Applications

  • Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.405-412
    • /
    • 2016
  • In general, surface mounted PM synchronous motors (SPMSMs) are mainly adopted as a driving motor for high-speed applications, because they have high efficiency and high power density. However, the SPMSMs have some weak points such as the increase of magnetic reluctance and additional losses as a consequence of using a non-magnetic sleeve. Especially, the magneto-motive force (MMF) in the air-gap of the SPMSMs is weakened due to the magnetically increased resistance. For that reason, a large amount of PM is consumed to meet the required MMF. Nevertheless, it cannot help using the sleeve in order to maintain the mechanical integrity of a rotor assembly in high-speed rotation. Thus, in this paper, a multi-layer interior PM synchronous motor (IPMSM) not using the sleeve is presented and designed as an alternative of a SPMSM. Both motors are evaluated by test results based on a variety of characteristics required for an air blower system of a fuel cell electric vehicle.

Speed Control of Permanent Magnet Synchronous Motors using an Adaptive Controller (적응제어기를 이용한 영구자석 동기전동기의 속도 제어)

  • Jung, Jin-Woo;Kim, Tae-Heoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.977-983
    • /
    • 2011
  • This paper proposes a new adaptive speed controller to achieve a robust speed control of a permanent magnet synchronous motor(PMSM). The proposed adaptive regulator does not require any information on the motor parameter and load torque values, so it is very insensitive to model parameter and load torque variations. Also, the stability of the proposed adaptive control system is proven. To validate the robustness of the proposed adaptive speed controller, both simulation and experimental results are provided under motor parameter and load torque variations. It is clearly demonstrated that the proposed adaptive regulator can accurately control the speed of permanent magnet synchronous motors.

Fuzzy Speed Regulator based on a Fuzzy Acceleration Observer for Vector Control of Permanent Magnet Synchronous Motors (영구자석 동기전동기의 벡터 제어를 위한 퍼지 각가속도 관측기 기반의 퍼지 속도제어기)

  • Jung, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.330-337
    • /
    • 2011
  • This paper presents a new fuzzy speed controller based on a fuzzy angular acceleration observer to realize a robust speed control of permanent magnet synchronous motors(PMSM). The proposed speed controller needs the information of the angular acceleration, thus the first-order fuzzy acceleration observer is designed. The LMI existence condition is given for the proposed fuzzy speed controller, and the gain matrices of the controller are calculated. It is verified that the augmented control system consisting of the fuzzy speed controller and the fuzzy acceleration observer is mathematically stable. To validate the effectiveness of the proposed acceleration observer-based fuzzy speed controller, the simulation and experimental results are shown under motor parameter variations. It is definitely proven that the proposed control scheme can precisely track the speed of a permanent magnet synchronous motor.

Analysis on the Core Loss and Windage Loss in Permanent Magnet Synchronous Motor for High-Speed Application (고속으로 운전되는 영구자석형 동기전동기의 철손 및 풍손 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Cho, Han-Wook
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.511-520
    • /
    • 2006
  • Recently, more attention has been paid to the development of high-speed permanent magnet (PM) synchronous motors, since they are conductive to high efficiency, high power density, small size, and low weight. In high-speed PM machines, core loss and windage loss form a larger proportion of the total losses than usual in conventional mid- or low speed machines. This article deals with the analysis on the core loss and windage loss in PM synchronous motor for high-speed application. Using the data information from a manufacturer and non-linear curve fitting, this paper investigates the magnetic behavior and its core losses in the stator core using the electrical steels. And, the windage loss is calculated according to the variation of the rotational speed, motor inner pressure and temperature.

Speed and Position Sensorless Vector Controlled Drive of the Permanent Magnet Synchronous Motors (속도 및 위치검출기를 사용하지 않은 영구자석 동기전동기의 벡터제어)

  • 이홍희;김경서;박민호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1253-1260
    • /
    • 1990
  • The traditional speed and pole position sensors, which are inevitable to drive the permanent magnet synchronous motors, are removed by the parameter identification using model reference adaptive systems. Also, the current detecting method is proposed on the synchronously rotating axis without the position information, and this enables the implementation of the proposed algorithm. The proposed methods have been confirmed both by digital simulation and experiments.

A Speed Sensorless Vector Control for Permanent Magnet Synchronous Motors using the Integral Binary Observer (적분스위칭평면을 갖는 바이너리 관측기를 이용한 영구자석 동기전동기의 속도 및 위치센서리스 제어)

  • 한윤석;김영석;김현중
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.18-21
    • /
    • 1999
  • This paper presents a speed and position sensorless control of permanent magnet synchronous motors using an integral binary observer. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. The observer structure and its deign method are described. The experimetntal results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

  • PDF