• 제목/요약/키워드: Synchronous generator design

Search Result 170, Processing Time 0.027 seconds

Design of a High Frequency PWM Converter for Synchronous Generator Excitation System (동기발전기 여자시스템용 고주파 PWM 컨버터 설계)

  • Jang Su-Jin;Ryu Dong-Kyun;Won Chung-Yuen;Lee Jin-Kuk;Bae Kee-Hun;Kim Soo-Suck
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.515-518
    • /
    • 2002
  • A synchronous generator is equipped with an automatic voltage regulator(AVR), which is responsible for keeping the output voltage constant under normal operating conditions at various levels. The output voltage of Synchronous Generator is regulated constantly by field voltage control in excitation system. High frequency PWM converter (Buck converter) type excitation system for synchronous generator that can sustain prefer output voltage level even at the fault condition happened. The proper operation of the proposed excitation system was verified through the simulations and the experiments.

  • PDF

A Development of Surface Permanent Mount Synchronous Generator for 5 Phase 5KW (5상 5KW 표면부착형 영구자석 동기발전기(SPMSG) 개발)

  • Jung, Hyung-Woo;Kim, Min-Huei;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.87-96
    • /
    • 2012
  • This paper propose a development of surface permanent mount synchronous generator(SPMSG) for 5-phase 5Kw in order to study a polyphase ac machinery that keep hold of advantages more than traditional three-phase squirrel-cage induction motor, such as reducing a amplitude of torque pulsation decreasing electric noises, and increasing the reliability. Design methods of the generator use a development tools with Maxwell 2D and Simplorer. There are designed drawing of manufactured frames of the SPMSG. A amplitude and waveform of the generated electromotive force, FFT analysis of harmonics within output voltages, and reviewing a experiment results are shown by variable output frequency. We are presenting a design and manufacture methods for the SPMSG.

A Study on Excitation System for Synchronous Generator using Current Mode Controlled PWM Converter (전류제어형 PWM컨버터를 이용한 동기발전기용 여자시스템에 관한 연구)

  • 장수진;류동균;서민성;김준호;원충연;이진국
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.32-39
    • /
    • 2003
  • The output voltage of synchronous generator is regulated constantly by field current control in excitation system High frequency PWM converter (current control mode buck converter) type excitation systam fer synchronous generator is able to control exciter current when the load change happened. This paper deals with the design and evaluation of the excitation system for a synchronous generator to improve the steady state and transient stability. The simulation and experimental results show that the proposed excitation system is able to improve the response time by the DVR(digital voltage regulator) of 50[kW] synchronous generator.

Optimal Design of a Distributed Winding Type Axial Flux Permanent Magnet Synchronous Generator

  • You, Yong-Min;Lin, Hai;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.69-74
    • /
    • 2012
  • This paper presents a distributed winding type axial flux permanent magnet synchronous generator (AFPMSG) with reduced the total harmonic distortion (THD), suitable for wind turbine generation systems. Although the THD of the proposed distributed winding type is more reduced than the concentrated winding type, the unbalance of the phase back EMF occurs. To improve the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG, the Kriging based on the latin hypercube sampling (LHS) is utilized. Finally, these optimization results are confirmed by experimental results. As a result, the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG were improved while maintaining the total harmonic distortion (THD) and the average phase back EMF.

Design of the Synchronous generator and SVC controller Using LQG/LTR (LQG/LTR에 의한 동기발전기와 SVC의 제어기 설계)

  • Lee, Dong-Hee;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.227-229
    • /
    • 2000
  • This paper presents a LQG/LTR method for controlling the PSS and SVC effectively. A one-machine Infinite-bus power system is used as an analysis system, where PSS is installed at the synchronous generator and SVC at the generator bus as a parallel compensation device. The simulation results show that the LQG/LTR controller of PSS and SYC improves the power system stability effectively.

  • PDF

Status of 3 MW PM Synchronous Generator Development Project for Off-shore WECS (3MW 해상풍력용 영구자석 동기발전기 개발현황)

  • Kim, Dong-Eon;Han, Hong-Sik;Lee, Hong-Gi;Jung, Yung-Gyu;Suh, Hyung-Suck;Chung, Chin-Wha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.423-426
    • /
    • 2007
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. To reduce the switching loss in the power electronics, the maximum frequency is limited to 100 Hz. This requirement limits the number of pole to six or eight. Permanent magnet excitation is assumed for higher energy yield and higher efficiency. In this report, the requirements and the first efforts for the physics design are described.

  • PDF

An Approach to the Design Parameter of Air-Cored Superconducting Synchronous Generator (공심형 초전도 동기발전기의 설계변수에 대한 연구)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Sohn, Myung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.101-106
    • /
    • 2001
  • Air-cored superconducting synchronous generator(ASSG) is characterized by an air-cored machine with its rotor iron and stator iron teeth removed. For this reason, in the case of the shape optimum design of ASSG, other design variables different from an iron-cored machine should be considered, which will lead to substantial improvement on the performance. The major design variables that are considered by using Three-dimensional Finite element Method(3D FEM) in this paper are : 1) field coil width, 2) axial length of magnetic shield, and 3) armature winding method. End-ring of armature winding is considered in the calculation of EMF. When it comes to field coil width, as field coil width enlarges, its effective field increases but the maximum field on the superconductor decreases. this determines the critical current density. this study presents an effective field coil width, axial length of magnetic shield, and armature winding method, and also the analysis is verified by the experimental results.

  • PDF

Superconducting Synchronous Motor Design considering Machine Losses (손실을 고려한 초전도 동기전동기 설계)

  • 백승규;손명환;김석환;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.21-26
    • /
    • 2001
  • Superconducting synchronous generators and motors are designed based on 2 dimensional electro-magnetic approach. In the case of generator, if the machine output rating and terminal voltage are decided the armature rating current will be decided automatically according to its power factor. However, in the case of motor, if the output rating is given with [hp] or [kw] units, the armature terminal voltage and current are not decided directly because the machines armature input power and mechanical output are different by way of losses. So in order to calculate the armature current more accurately. the machine losses must be included in the design procedure. In this paper the machine loss of superconducting motor are analyzed and used for decision of the armature input power and current. Moreover, the differences of voltage equations between superconducting synchronous generator and motor are considered.

  • PDF

A Study on Output Characteristic Design of Radial Field Permanent Magnet Synchronous Generator for Urban Wind Turbine (도심형 풍력 발전기용 방사 자속형 영구자석 동기 발전기의 출력특성에 관한 연구)

  • Bae, Byung-Duk;Yun, Seung-Ju;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1001-1002
    • /
    • 2011
  • Recently, issues regarding environment and the diversification of dependence in oil are watched with keen interest. Wind power attracts most interest because of its high-energy efficiency with eco friendly functions. In this paper, deal with design of radial field permanent magnet synchronous generator for a urban wind power system. Analyzed the RFPM generator by electromagnetic, and designed wind power generator with this. The output characteristic of machine and all of process is analyzed by 2D FEA due to geometrical structures of RFPM machine.

  • PDF

Characteristic Analysis of Shorted-turn for Generator Rotor (발전기 회전자의 층간단락에 대한 특성 해석)

  • Kim S.J.;Jeon Y.S.;Lee S.H.;Choe G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.137-140
    • /
    • 2003
  • Shorted-turns can have significant effects on a generator and its performance. Shorted-turn sensor for synchronous generator's field winding have been developed. One of effective method detecting inter-turn short circuits on round rotor winding is a method using sensor detecting. But the method needs duplicate design of sensor for characteristic change according to types and forms of generator Thus sensing skill without sensor depend on change of electric property in generator. For the reason, this paper presents shorted-turns phenomenon and the characteristic analysis of shorted-turns In synchronous generator by using 2-D finite element method(FEM).

  • PDF