• Title/Summary/Keyword: Synchronous Q&A

Search Result 194, Processing Time 0.028 seconds

Study of Maximum Torque Operation of Interior Permanent Magnet Synchronous Motor in Constant Torque Region (매입형 영구자석 동기전동기의 일정 토크 영역에서 최대 토오크 운전에 관한 연구)

  • Kim, Jang-Mok;Kim, Su-Yeol;Ryu, Ho-Seon;Im, Ik-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.195-203
    • /
    • 2000
  • In this paper a new controller is proposed to operate the interior permanent magnet synchronous motor(IPMSM) by the control method of the maximum torque per ampere in constant torque region. The implementation method of the conventional torque controller is explained and analyzed exactly. The proposed controller does not use the torque and q-axis current of the speed controller but the amplitude of the stator current in order to utilize not only the magnetic alignment torque but also the reluctance in the constant region, gurantees the linearity of the torque, and is easily implemented. These attractive are verified through the experiment.

  • PDF

Sensorless Control of BLDC Motor using d-q Synchronously Rotating Reference Frame Concept (d-q 동기좌표 변환 개념을 이용한 BLDC 전동기의 센서리스)

  • Moon, Jong-Joo;Heo, Hong-Jun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.232-238
    • /
    • 2015
  • A sensorless control algorithm of brushless DC (BLDC) motors with a model current based on 120 degree conduction mode is proposed in this paper. The rotor speed and position can be estimated using the current model of BLDC motor, which is a modified version of the conventional current model of permanent magnet synchronous motor. The rotor speed and position can be obtained using the difference of the actual current and the model current. The position error caused by the parameter errors of the model current is compensated using a PI controller and the feedback loop of the real current. The validity of the proposed sensorless control algorithm is verified through simulation.

Compensation of Time Delay in Induction Motor Vector Control System Using DQ Transformation (유도전동기 벡터제어 시스템에서 DQ변환을 이용한 시간지연 보상)

  • 최병태;권우현;박철우
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1001-1008
    • /
    • 2003
  • A time-delay compensation method for vector control system is proposed that can compensate for voltage and current distortions resulting from a time delay in the overall system due to the low pass filter, hysteresis control inverter, microprocessor program computation time, and so on. The proposed scheme estimates the time delay using the difference between the Q-axis stator current command and the time-delayed actual Q-axis stator current in a synchronous reference frame, then compensates the time delay in the voltage and current using the angular displacement of a DQ transformation. Accordingly, the proposed scheme can accurately compensate for the time delay related to the overall system, thereby significantly improving the performance of the vector control system, as verified by simulation and experiment.

Advanced Control of Three-Phase Four-Wire Inverters using Feedback Linearization under Unbalanced and Nonlinear Load Conditions (불평형 비선형 부하시 궤환선형화 기법을 이용한 3상 4선식 인버터의 제어 성능 개선)

  • Vo, Nguyen Qui Tu;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.333-341
    • /
    • 2013
  • In this paper, a feedback linearization control is proposed to regulate the output voltages of a three-phase four-wire inverter under the unbalanced and nonlinear load conditions. First, the nonlinear model of system including the output LC filters is derived in the d-q-0 synchronous reference frame. Then, the system is linearized by the multi-input multi-output feedback linearization. The tracking controllers for d-q-0-components of three-phase line-to-neutral load voltages are designed by linear control theory. The experimental results have shown that the proposed control method gives the good performance in response to the load conditions.

Characteristic Analysis of Permanent Magnet Assisted Synchronous Reluctance Motor for High Power Application (고출력 응용을 위한 영구자석 매입형 동기 릴럭턴스 전동기의 특성해석)

  • Jang Young-Jin;Kim Gi-Bok;Lee Jung-Ho;Kim Sang-Gil;Shin Heung-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.10
    • /
    • pp.585-596
    • /
    • 2004
  • In this paper, finite element analysis for a PMASynRM is presented and the characteristic analysis of inductance and torque is performed under the effect of saturation. The focus of this paper is characteristic analysis of d and q-axis inductances and torque according to magnetizing quantity of interior permanent magnet for PMASynRM. The d and q-axis current component ratios, load angles of a PMASynRM are investigated quantitatively on the basis of the proposed analysis method and the experimental test. Comparisons are given with output characteristic curves of normal SynRM and those according to the load in PMASynRM, respectively And it is confirmed that the proposed model results in high output power performance.

Calculation method of d,q axis linkage flux considering ripple characteristics in multilayer-buried IPMSM (다층 매입형 영구자석 전동기의 리플현상을 고려한 d,q축 쇄교자속 계산)

  • Woo, Dong-Kyun;Kwak, Sang-Yeop;Seo, Jang-Ho;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.776-777
    • /
    • 2008
  • It is important to understand the relationship accurately between linkage flux distributions and machine characteristics for better design of multilayer-buried interior permanent magnet synchronous machines(IPMSM). This paper presents a improved calculation method for linkage flux of multilayer-buried IPMSM. From the analysis result, The proposed method shows that the calculated d,q linkage flux reflects a electromagnetic characteristic well in analysis model.

  • PDF

Characteristic Analysis of Permanent Magnet Assisted Synchronous Reluctance Motorfor High Power Application (고출력 응용을 위한 영구자석 매입형 동기 릴럭턴스 전동기의 특성해석)

  • Jang Young-Jin;Kim Sang-Gil;Shin Heung-Kyo;Park Seong-June;Lee Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.914-916
    • /
    • 2004
  • In this paper, finite element analysis for a PMASynRM is presented and the characteristic analysis of inductance and torque is performed under the effect of saturation. The focus of this paper is characteristic analysis of d and q-axis inductances and torque according to magnetizing quantity of interior permanent magnet for PMASynRM. The d and q-axis current component ratios, load angles of a PMASynRM are investigated quantitatively on the basis of the proposed analysis method and the experimental test. Comparisons are given with output characteristic curves of normal SynRM and those according to the load in PMASynRM, respectively. And it is confirmed that the proposed model results in high output power performance.

  • PDF

Wind Power Grid Integration of an IPMSG using a Diode Rectifier and a Simple MPPT Control for Grid-Side Inverters

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.548-554
    • /
    • 2010
  • In this paper, a 1.5 kW Interior Permanent Magnet Synchronous Generator (IPMSG) with a power conditioner for the grid integration of a variable-speed wind turbine is developed. The power-conditioning system consists of a series-type 12-pulse diode rectifier powered by a phase shifting transformer and then cascaded to a PWM voltage source inverter. The PWM inverter is utilized to supply sinusoidal currents to the utility line by controlling the active and reactive current components in the q-d rotating reference frame. While the q-axis active current of the PWM inverter is regulated to follow an optimized active current reference so as to track the maximum power of the wind turbine. The d-axis reactive current can be adjusted to control the reactive power and voltage. In order to track the maximum power of the wind turbine, the optimal active current reference is determined by using a simple MPPT algorithm which requires only three sensors. Moreover, the phase angle of the utility voltage is detected using a simple electronic circuit consisting of both a zero-crossing voltage detecting circuit and a counter circuit employed with a crystal oscillator. At the generator terminals, a passive filter is designed not only to decrease the harmonic voltages and currents observed at the terminals of the IPMSG but also to improve the generator efficiency. The laboratory results indicate that the losses in the IPMSG can be effectively reduced by setting a passive filter at the generator terminals.

A study on Energy Conversion through Torque Control of IPMSM in EV Powertrain (EV 파워트레인에서 IPMSM의 토크 제어를 통한 에너지 변환에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.845-850
    • /
    • 2021
  • In this study, the energy conversion characteristics and design of electric vehicle (EV: Electric Vehicle) powertrain were performed. An interior permanent magnet synchronous motor (IPMSM) was targeted as a power source for the EV powertrain, and control was performed. In order to drive the IPMSM, two regions are considered: a constant torque and a constant output (field-weakening) region. The design of the control system for IPMSM was constructed based on the d-q reference frame (vector control). To determine the static characteristics of motor torque appearing in two areas of IPMSM, a torque control system and a d axis current control system of IPMSM were implemented and proposed. Matlab-Simulink software was used for characteristic analysis. Finally, by applying IPMSM to the powertrain model under the actual EV vehicle level conditions, simulation results of the proposed control system were performed and characteristics were analyzed.

Time Delay Compensation of Induction Motor Vector Control System (유도전동기 벡터제어 시스템의 시간지연 보상)

  • 박철우;최연호;임성운;윤경섭;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.231-231
    • /
    • 2000
  • It is proposed that a novel method which can compensate the time delay occurs in overall system, when voltage and current is measured, owing to LPF, hysteresis control inverter and microprocessor program computation time. The Proposed scheme estimates the time delay using the difference between Q-axis stator current command and time delayed Q-axis stator current in synchronous reference frame, and compensates the time delay of voltage and current using angular displacement of DQ transformation. The proposed scheme compensates accurately the time delay occurs in overall system. Therefore performance of vector control system is improved highly and it is verified by simulation and experiment.

  • PDF