• Title/Summary/Keyword: Synchronous Error

Search Result 344, Processing Time 0.021 seconds

Robust Nonlinear Speed Control For Permanent Magnet Synchronous Motor (영구자석 동기전동기의 강인한 비선형 속도제어)

  • Baik, In-Cheol;Kim, Kyung-Hwa;Moon, Gun-Woo;Chung, Se-Kyo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.234-236
    • /
    • 1995
  • A robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) is presented. A perturbed dynamic model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is proposed and compared with the conventional controller.

  • PDF

Stator Resistance Estimation of Permanent Magnet Synchronous Motor by using Kalman Filter (칼만 필터를 이용한 영구자석 동기 전동기의 고정자 저항값 검출 방법)

  • Hwang, Sangjin;Lee, Dongmyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • Accurate estimation of motor parameters is required in some motor control applications. For example, the value of stator resistance is required for stator flux-oriented control mostly used in doubly fed induction generator systems. Stator resistance is not a constant value and continuously changes due to the rise in temperature during motor operation. Estimation errors degrade the control performance. Hence, this study proposes a simple stator resistance estimation method. In this scheme, the differential components of voltage and current values are used to eliminate the dead-time effect, and Kalman filter algorithm is applied to reduce the error according to measurement noise. Simulation and experimental results obtained with a permanent magnet motor show the validity of the proposed algorithm.

Improved BP-NN Controller of PMSM for Speed Regulation

  • Feng, Li-Jia;Joung, Gyu-Bum
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2021
  • We have studied the speed regulation of the permanent magnet synchronous motor (PMSM) servo system in this paper. To optimize the PMSM servo system's speed-control performance with disturbances, a non-linear speed-control technique using a back-propagation neural network (BP-NN) algorithm forthe controller design of the PMSM speed loop is introduced. To solve the slow convergence speed and easy to fall into the local minimum problem of BP-NN, we develope an improved BP-NN control algorithm by limiting the range of neural network outputs of the proportional coefficient Kp, integral coefficient Ki of the controller, and add adaptive gain factor β, that is the internal gain correction ratio. Compared with the conventional PI control method, our improved BP-NN control algorithm makes the settling time faster without static error, overshoot or oscillation. Simulation comparisons have been made for our improved BP-NN control method and the conventional PI control method to verify the proposed method's effectiveness.

Random sequence synchronization failure detection algorithm for synchronous stream cipher system using RMVD (RMVD를 이용하는 동기식 스트림 암호 데이터 통신시 난수동기 이탈 검출 알고리듬)

  • 박종욱
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.3
    • /
    • pp.29-36
    • /
    • 2000
  • It is very import role to increase communication quality that fast detection of random sequence synchronization fail in synchronous stream cipher system using initial synchronization mode. Generally it sends additional information to detect random sequency synchronization fail. But we can't transmit additional informations to decide synchronization fail in a system using RMVD to correct channel error. In this paper we propose a method to detect synchronization fail in the receiver even though a system using RMVD has no margin to send additional information, For detecting random sequency synchronization fail we decipher receiver data analyze probability of transition rate for pre-determined period and decide synchronization fail using calculated transition rate probability. This proposed method is fast very reliable and robust in noisy channel and is easily implemented with hardware.

Development of the Zero-Phase-Error Speed Controller for High Performance PMSM Drives (고성능 영구자석 동기전동기 운전을 위한 영위상오차 속도제어기의 구현)

  • Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.184-193
    • /
    • 2014
  • This paper presents a high performance ZPE(zero-phase-error) speed controller for PMSM(permanent magnet synchronous motor) drives. A comparison study between conventional general purpose speed controller in modern industry fields such as PI, IP and 2-degree of freedom controller presented also. The proposed ZPE speed controller is found suitable for vector controlled PMSM drives in giving the high level of performance while maintaining the excellent response at the time of speed command changing. In MATLAB-based comparative simulation and experiment results with commercial drive system, the proposed method shows a superior control performance compared with the conventional speed controller widely-used.

Sensorless Control of a Permanent Magnet Synchronous Motor with Compensation of the Position Error Using Rectangular 2 Hall Sensors (구형파 2-Hall Sensor를 사용한 영구자석형 동기전동기의 센서리스 제어시의 위치오차 보정)

  • Kim, Kyung-Min;Lee, Jung-Hyo;Kong, Tae-Woong;Hwang, Chun-Hwan;Lee, Won-Cheol;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.115-117
    • /
    • 2008
  • Generally, because of the cost and the restricted manufacture standard, the motor control for home appliance have been used the method using hall sensors or the sensorless method. In the conventional sensorless method using home appliance, the resistor and the back-EMF coefficient are varied by the motor speed and the load torque. Therefore, these variations cause the position error when the sensorless control is operated. This paper proposes the compensation method for sensorless position error using 2-hall sensor pulse signals.

  • PDF

HAI Control for Speed Control of SPMSM Drive (SPMSM 드라이브의 속도제어를 위한 HAI 제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent(HAI) controller for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on HAI controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Performance Improvement of Slotless SPMSM Position Sensorless Control in Very Low-Speed Region

  • Iwata, Takurou;Morimoto, Shigeo;Inoue, Yukinori;Sanada, Masayuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • This paper proposes a method for improving the performance of a position sensorless control system for a slotless surface permanent magnet synchronous motor (SPMSM) in a very low-speed region. In position sensorless control based on a motor model, accurate motor parameters are required because parameter errors would affect position estimation accuracy. Therefore, online parameter identification is applied in the proposed system. The error between the reference voltage and the voltage applied to the motor is also affect position estimation accuracy and stability, thus it is compensated to ensure accuracy and stability of the sensorless control system. In this study, two voltage error compensation methods are used, and the effects of the compensation methods are discussed. The performance of the proposed sensorless control method is evaluated by experimental results.

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

The Reluctance Torque Estimate by Linkage Flux Calculation of IPMSM (IPMSM의 쇄교자속 계산을 통한 릴럭턴스 토크 산정)

  • Cho, Gyu-Won;Kim, Cheol-Min;Lee, Jung-Gyu;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.171-176
    • /
    • 2013
  • Classically, reluctance torque of IPMSM(Interior Permanent Magnet Synchronous Motor) by using inductance according to current phase angle generates an error. This error is affected by total torque. From current phase angle $0^{\circ}$ to large errors will occur, because reluctance torque include current phase angle. But, reluctance torque from steady-state voltage equation of IPMSM is represented by linkage flux. So, reluctance torque is unrelated to the current phase angle formula can be derived. In this paper, operating torque was analyzed by d, q-axis linkage flux of IPMSM and reluctance torque to perform calculations reduced the error of the total torque calculation.