• Title/Summary/Keyword: Synchronous Development

Search Result 330, Processing Time 0.023 seconds

Clinicopathologic characteristics and survival rate in patients with synchronous or metachronous double primary colorectal and gastric cancer

  • Park, Ji-Hyeon;Baek, Jeong-Heum;Yang, Jun-Young;Lee, Won-Suk;Lee, Woon-Kee
    • Korean Journal of Clinical Oncology
    • /
    • v.14 no.2
    • /
    • pp.83-88
    • /
    • 2018
  • Purpose: Double primary colorectal cancer (CRC) and gastric cancer (GC) represent the most common multiple primary malignant tumors (MPMT) in Korea. The recognition and screening of hidden malignancies other than the primary cancer are critical. This study aimed to investigate the clinicopathologic characteristics and survival rates in patients with synchronous or metachronous double primary CRC and GC. Methods: Between January 1994 and May 2018, 11,050 patients were diagnosed with CRC (n=5,454) or GC (n=5,596) at Gil Medical Center. MPMT and metastatic malignant tumors were excluded from this study. A total of 103 patients with double primary CRC and GC were divided into two groups: the synchronous group (n=40) and the metachronous group (n=63). The incidence, clinicopathologic characteristics, and survival rate of the two groups were analyzed. Results: The incidence of synchronous and metachronous double primary CRC and GC was 0.93%. Double primary CRC and GC commonly occurred in male patients aged over 60 years with low comorbidities and minimal previous cancer history. There were significant differences between the synchronous and metachronous groups in terms of age, morbidity, and overall survival. Metachronous group patients were 6 years younger on average (P=0.009), had low comorbidities (P=0.008), and showed a higher 5-year overall survival rate (94.8% and 61.3%, P<0.001) in contrast to synchronous group. Conclusion: When primary cancer (CRC or GC) is detected, it is important to be aware of the possibility of the second primary cancer (GC or CRC) development at that time or during follow-up to achieve early detection and better prognosis.

Characteristic Analysis of a High Speed Permanent Magnet Synchronous Generator considering the Operating Speed (구동 속도를 고려한 고속 영구자석형 동기발전기의 특성 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Cho, Han-Wook;Jeong, Yeon-Ho;Oh, Won-Gku
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.116-118
    • /
    • 2006
  • Recently more attention is paid to the development of high-speed permanent magnet (PM) synchronous generators driven by gas-turbine, since they are conductive to high efficiency, high power density, small size, low weight, simple mechanical construction, easy maintenance and good reliability. In this paper, the performance analysis of a high-speed PM synchronous generator for military power application considering the min-max operating speed is presented. The output current and power versus DC-link voltage loci can obtained by solving the PM machine's steady-state equations for variable resistive load.

  • PDF

Design and Implementation of a Reverse Matrix Converter for Permanent Magnet Synchronous Motor Drives

  • Lee, Eunsil;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2297-2306
    • /
    • 2015
  • This paper presents the development of a system with a reverse matrix converter (RMC) for permanent magnet synchronous motor (PMSM) drive and its effective control method. The voltage transfer ratio of the general matrix converter is restricted to a maximum value of 0.866, which is not suitable for applications whose source voltages are lower than the load voltages. The proposed RMC topology can step up the voltage without any additional components in the conventional circuit. Its control method is different from traditional matrix converter’s one, thus this paper proposes control schemes of RMC by means of controlling both the generator and motor side currents with properly designed control loop. The converter can have sinusoidal input/output current waveforms in steady state condition as well as a boosted voltage. In this paper, a hardware system with an RMC for a PMSM drive system is described. The performance of the system was investigated through experiments

Status of 3 MW PM Synchronous Generator Development Project for Off-shore WECS (3MW 해상풍력용 영구자석 동기발전기 개발현황)

  • Kim, Dong-Eon;Han, Hong-Sik;Lee, Hong-Gi;Jung, Yung-Gyu;Suh, Hyung-Suck;Chung, Chin-Wha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.423-426
    • /
    • 2007
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. To reduce the switching loss in the power electronics, the maximum frequency is limited to 100 Hz. This requirement limits the number of pole to six or eight. Permanent magnet excitation is assumed for higher energy yield and higher efficiency. In this report, the requirements and the first efforts for the physics design are described.

  • PDF

Maximum Torque Control of Synchronous Reluctance Motor including iron loss and saturation (철손과 포화를 고려한 동기 릴럭턴스 모터의 최대토크제어)

  • Baek, Dong-Gi;Kim, Min-Tae;Hwang, Yeong-Seong;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.116-122
    • /
    • 2000
  • In the high speed range for salient type synchronous reluctance motor, the effect of iron loss can not be negligible. We have investigated the voltage equations including iron loss from the model that is added the equivalent iron loss in the equivalent inductance in series. In this paper, we derive Ld linear approximate equation from saturation range of Ld, Lq vs applied voltage characteristics and obtain equations including saturation and iron loss related to maximum torque control using Ld. The effect of saturation and iron loss is investigated under maximum torque control. And we show that the proposed maximum torque control scheme achieves the desired performances through experimental results.

  • PDF

Development of Shorted-Turn Sensor for Synchronous Generator's Field Winding (동기발전기 계자권선의 층간단락 감지센서 개발)

  • Cho, Ji-Won;Lee, Byung-Ha;Lee, Young-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2114-2116
    • /
    • 1999
  • The shorted-turn sensor for synchronous generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a shorted-turn test was performed at the Seoinchon combined cycle power plant on gas turbine generator. This sensor will be used as a detecting of shorted-turn for synchronous generator's field winding.

  • PDF

Development of high speed synchronous control system for real time 3D eye imaging equipment using deadbeat observer (데드비트 관측기를 이용한 망막의 3차원 실시간 영상화를 위한 고속 동기제어 시스템 개발)

  • Ko Jong-Sun;Kim Young-Il;Lee Tae-hoon
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.177-180
    • /
    • 2002
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the travelling difference. This method requires exact synchronous control of laser travelling in optic system to show a clear 3-dimensional image of retina. To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a synchronous control of the galvanometer using deadbeat torque observer to make 3-dimensional retina image is presented. For the more, a very simple mathematical model of the galvanometer is approved by experimental result.

  • PDF

Characteristics of Maximization Output Control for Variable Wind Generation System Using IPMSG (IPMSG을 이용한 풍력 발전 시스템의 최대 출력화 제어 특성)

  • Mun, Sang-Pil;Heo, Young-Hwan;Kim, Jong-Suk;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.151-157
    • /
    • 2016
  • This paper proposes the variable wind generation system based on the direct torque control(DTC)for the interior permanent magnet synchronous generator. The proposed system can achieve the MPPT control without wind speed in addition to the speed and position sensorless control as well as the conventional current control method. The DTC has several advantages such as simply system configuration, ease of the flux weakening control and the sensorless control. The experimental results show the performance of the proposed wind generation system.

Design of Preventing Deviation System of Magnet for high Speed Rotated Surface Mounted Permanent Magnet Synchronous Generator (고속으로 회전하는 표면부착형 영구자석 동기발전기의 마그넷 이탈방지 시스템 설계)

  • Kim, Youngmin;Kim, Jungsu;Park, Sunho;Lim, Minsoo;Bang, Johyug;Ryu, Jiyune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • Surface Permanent-Magnetic-Synchronous-Generator (SPMSG) discussed in the present study has operational characteristics such as high rotational speed over 1,000 rpm and centrifugal force of 12 kN·m for each magnet. Structure-development analysis for the minimization of rotor-core weights and the maximization of thermal emission is performed by applying the aluminum-laminated cap which combines the advantages of IPM and SPM in order to overcome the difficulty that attaching the magnet to rotor-core only with an adhesive. In this study, the simulations in terms of structure and electromagnetic were performed with the variable parameters such as shape and thickness of laminated-cap and division method of magnet. As a result, condition for minimized centrifugal force with minimum loss is derived.

Development of Wound Rotor Synchronous Motor for Belt-Driven e-Assist System

  • Lee, Geun-Ho;Lee, Heon-Hyeong;Wang, Qi
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2013
  • The automotive industry is showing widespread interest in belt-driven electric motor-assisted (e-Assist) systems. A belt-driven assist system (BAS) starts and assists the combustion engine in place of the conventional generator. In this study, a water-cooled wound rotor synchronous motor (WRSM) for the e-Assist system was designed and analyzed. The performance of the WRSM was compared with that of an interior permanent magnet synchronous motor (IPMSM). The WRSM efficiency can be improved for the BAS by adjusting the field flux at high speeds. The field current map to obtain the maximum efficiency based on the speed and torque was developed. To control the field flux via field current control in the WRSM, a general H-bridge circuit was added to the WRSM inverter to get the rapid current response in the high-speed region; the characteristics were compared with the chopper circuit. A WRSM developed for the belt-driven e-Assist system and a prototype 115 V power electronic converter to drive the WRSM were tested with a 900 cc combustion engine. The test results showed that the WRSM-type e-Assist system had good characteristics and could successfully start and assist the 900 cc combustion engine.