• Title/Summary/Keyword: Synchronize

Search Result 351, Processing Time 0.037 seconds

Synchronization Schemes for SVC Signals in the Layered Modulation System (계층적 변조 시스템에서 SVC 신호의 동기화 방안)

  • Huynh, Tan-Bao;Kim, Seung-Chul;Sohn, Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.97-100
    • /
    • 2009
  • The paper describes synchronization schemes for scalable video coding signals over the DVB-S2 network. The MPEG-4 SVC signals include a base layer signal and an enhancement layer signal. They are packetized into MPEG-2 transport streams and transmitted on separate RF channels through the DVB-S2 system. The DVB-S2 receiver is required to synchronize each layer signal together to recover the full pictures. Some new schemes to synchronize two. layered SVC signals in MPEG-4 SVC decoder are proposed and analyzed.

  • PDF

Development of high speed synchronous control system for real time 3D eye imaging equipment (망막의 3차원 실시간 영상화를 위한 고속 동기제어 시스템 개발)

  • Ko Jong-Sun;Kim Young-Il;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.689-692
    • /
    • 2002
  • To show a retina shape and thickness on the computer, a laser has been used in Scanning Laser Ophthalmoscope (SLO) equipment using the travelling difference. This method requires exact synchronize control of laser travelling in optic system to show this image. In this study, a synchronize control of the galvanometer to make 3-dimentional retina image. To obtain a clear 3-dimentional image, this exact synchronism is very Important for making perfect plane scanning.

  • PDF

Synchronization System for Time of Mission and Flight Computers over UAV Network

  • Lee, Won-Seok;Jang, Jun-Yong;Song, Hyoung-Kyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.387-393
    • /
    • 2021
  • This paper proposes a system to synchronize the time of computers over an unmanned aerial vehicle (UAV) network. With the proposed system, the UAVs can perform missions that require precise relative time. Also, data collected by UAVs can be fused precisely with synchronized time. In the system, to synchronize the time of all computers over the UAV network, two-step synchronization is performed. In the first step, the mission computers of the UAVs are synchronized through the server of the system. After the first step, the mission computers measure time offset between the time of the mission computers and the flight computers. The offset values are delivered to the server. In the second step, virtual time is determined by the server from the collected time offset. The measured offset is compensated by moving the synchronized time of mission computers to the reasonable virtual time. Since only the time of mission computers are controlled, any flight computers that use micro air vehicle link (MAVLink) protocol can be synchronized in the proposed system.

Modified Lorenz Chaos Synchronization Via Active Sliding Mode Controller (능동 슬라이딩 모드 제어기를 이용한 변형된 Lorenz 카오스 동기화)

  • Ryu, Ki-Tak;Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.16-23
    • /
    • 2018
  • Chaos is one of the most significant topics in nonlinear science, and has been intensively studied since the Lorenz system was introduced. One characteristic of a chaotic system is that the signals produced by it do not synchronize with any other system. It therefore seems impossible for two chaotic systems to synchronize with each other, but if the two systems exchange information in just the right way, they can synchronize. This paper addresses the problem of synchronization in a modified Lorenz chaotic system based on active control, sliding mode control, and the Lyapunov stability theory. The considered synchronization scheme consists of identical drive and response generalized systems coupled with linear state error variables. For this, a brief overview of the modified Lorenz chaotic system is given. Then, control rules are derived for chaos synchronization via active control and slide mode control theory, with a strategy for solving the chattering problem. The asymptotic stability of the overall feedback system is established using the Lyapunov stability theory. A set of computer simulation works is presented graphically to confirm the validity of the proposed method.

A Real-time Virtual Model Synchronization Algorithm Using Object Feature Detection (객체 특징 탐색을 이용한 실시간 가상 모델 동기화 알고리즘)

  • Lee, Ki-Hyeok;Kim, Mu-In;Kim, Min-Jae;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.203-208
    • /
    • 2019
  • In this paper, we propose a real-time virtual model synchronization algorithm using object feature detection. The proposed algorithm may be useful to synchronize between real objects and their corresponding virtual models through object feature search in two-dimensional images. It consists of an algorithm to classify objects with colors individually, and an algorithm to analyze the orientation of objects with angles. We can synchronize the motion of the real object with the virtual model by providing the environment of moving the virtual object through the hand without specific controllers. The future research will include the algorithm to synchronize real object with unspecified shapes, colors, and directions to the corresponding virtual object.

Support the IEEE 1588 Standard in A Heterogeneous Distributed Network Environment PTP for Time Synchronization Algorithms Based Application Framework Development Method (IEEE 1588 표준을 지원하는 이기종 분산 네트워크 환경에서 시간 동기화를 위한 PTP 알고리즘 기반의 어플리케이션 프레임워크 개발 기법)

  • Cho, Kyeong Rae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.67-78
    • /
    • 2013
  • In this paper, We proposed an development method of application framework for using the precision time protocol(PTP) based on physical layer devices to synchronize clocks across a network with IEEE1588 capable devices. The algorithm was not designed as a complete solution across all conditions, but is intended to show the feasibility of such a for the PTP(Precision Time Protocol) based on time synchronization of heterogeneous network between devices that support in IEEE 1588 Standard application framework. With synchronization messages per second, the system was able to accurately synchronize across a single heavily loaded switch. we describes a method of synchronization that provides much more accurate synchronization in systems with larger networks. In this paper, using the IEEE 1588 PTP support for object-oriented modeling techniques through the 'application framework development Development(AFDM)' is proposed. The method described attempts to detect minimum delays, or precision packet probe and packet metrics. The method also takes advantage of the Tablet PC(Primary to Secondary) clock control mechanism to separately control clock rate and time corrections, minimizing overshoot or wild swings in the accuracy of the clock. We verifying the performance of PTP Systems through experiments that proposed method.

Integration and Synchronization of Multi Sensors for Mobile Mapping System (모바일 매핑시스템을 위한 멀티 센서 통합 및 동기화 구현 방안 연구)

  • Park, Young-Moo;Lee, Jong-Ki;Sung, Jeong-Gon;Kim, Byung-Guk
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.51-58
    • /
    • 2004
  • Mobile Mapping System is an effective wav to obtain position and image using vehicle equipped with GPS(Global Positioning System), IMU(Inertial Measurement Unit), and CCD camera. It have been used various fields of load facility management, map upgrade and etc. It is difficult to upgrade Mobile Mopping System which is developed from abroad and add other sensors because we don't know the way to integrate and synchronize multi-sensors. In this paper, we present the effective way of the integration and synchronization method for multi sensors we designed and manufactured Synchronization equipment by considering sensors of laser, odometer and etc.

  • PDF

A synchronized mobile agent in Distributed Database Environments (분산 DB 환경에서 동기화 이동에이전트)

  • Kook, Youn-Gyou;Kim, Woon-Yong;Jung, Gye-Dong;Kim, Yung-Chul-R.;Choi, Yung-Keun
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.313-320
    • /
    • 2003
  • This paper design and implements a synchronized agent mechanism that be able to synchronize SFT (Slow Frequency Transaction) data among e-business processes in distributed environment. This synchronized agent system is adopted to use mobile agent to guarantee the interoperability of the distributed processes and to solve some problems at the client/server architecture and proposes a policy to synchronize data of e-business processes on the any platforms of distributed heterogeneous systems. The proposed synchronization policy is based on the time-stamp transaction with the system priority on the unicasting transportation.

EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘)

  • Kim, Soo-Joong;Hong, Sung-Hwa;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF