• Title/Summary/Keyword: SynRM

Search Result 119, Processing Time 0.047 seconds

Optimum Design of Axially Laminated Anisotropic Synchronous Reluctance Motor and Comparison of Characteristics with Induction Motor (축 방향 성층 이방성 동기형 릴럭턴스 전동기의 최적설계 및 유도전동기와의 특성 비교)

  • Lee, Pil-Won;Byen, Won-Gee;Lee, Jun-Ho;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.349-357
    • /
    • 2014
  • The performance of a Synchronous Reluctance Motor (SynRM) in terms of torque and power factor depends on the two-axis inductances $L_d$ and $L_q$ of the machine. The Axially Laminated Anisotropic (ALA) rotor should be proposed in an effort to increase the $L_d/L_q$ ratio and the $L_d-L_q$ difference to secure high torque density and high power factor. So, ALA rotor is suitable for high speed instruments. This paper deals with optimum design of Axially Laminated Anisotropic Synchronous Reluctance Motor (ALA-SynRM) and comparison of characteristics with induction motor. Coupled Finite Element Methodology (FEM) & Response Surface Methodology (RSM) have been used to evaluate optimum design solutions. Comparisons are given with characteristics of a same rated wattage induction motor and those of ALA-SynRM respectively.

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.249-256
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control (FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, FLC and ANN controller.

Maximum Torque Control of SynRM Drive with Adaptive FNN Controller (적응 FNN 제어기에 의한 SynRM 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Byung-Sang;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.729-730
    • /
    • 2006
  • The paper is proposed maximum torque control of SynRM drive using adaptive fuzzy neural network(A-FNN) controller and artificial neural network(ANN). For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled A-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the A-FNN and ANN controller.

  • PDF

Efficiency Optimization Control of SynRM with FNPI Controller (FNPI 제어기예 의한 SynRM의 효율 최적화 제어)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.29-31
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on fuzzy-neural networks (FN)-PI controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses In variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Optimum Design Criteria based on Capacity of Synchronous Reluctance Motor Using a Coupled FEM & SUMT (유한요소법을 이용한 동기형 릴럭턴스 전동기의 용량에 따른 회전자 구조설계와 SUMT를 이용한 최적설계)

  • Kwon, Sun-Bum;Kim, Gi-Bok;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.126-128
    • /
    • 2004
  • This paper deals with an automatic optimum design based on capacity for a synchronous reluctance motor (SynRM). The focus of this paper is the design relative to the output power on the basis of rotor shape of a SynRM in each capacity. And optimization algorithm is used by means of sequential unconstrained minimization technique(SUMT). The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate nonlinear solutions. The proposed procedure allows to define the rotor geometric dimensions according to capacity starting from an existing motor or a preliminary design.

  • PDF

Study of Permanent Magnet Optimum Design on the PMa-SynRM (PMa-SynRM에서 영구자석 배치에 따른 최적 설계 연구)

  • Kim, Su-Yong;Kim, Won-Ho;Im, Jong-Bin;Lee, Ki-Deok;Ryu, Gwang-Hyeon;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.768_769
    • /
    • 2009
  • Average torque of PMa-SynRM(Permanent Magnet-assisted Synchronous Reluctance Motor) is changed by magnet form inserted to the barrier. Because the magnet form influences to the magnet-torque and reluctance torque. Therefore, this paper present a suitable permanent magnet form design for maximum torque when the magnet quantites are always fixed. And each motor characteristic such as average torque, torque ripple, cogging torque and back-EMF are analyzed by FEM(Finite Element Method) for optimal design..

  • PDF

Loss Analysis and Efficiency Evaluations of Synchronous Reluctance Motor Using Coupled FEM & Preisach Modelling (유한요소법과 프라이자흐 모델을 이용한 SynRM의 손실해석과 효율평가)

  • Cho, Yong-Hyun;Lee, Il-Kyo;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.718_719
    • /
    • 2009
  • This paper deals with the loss analysis and efficiency evaluations in a synchronous reluctance motor (SynRM) using a coupled transient finite element method (FEM) and Preisach modeling, which is presented to analyze the characteristics under the effect of saturation and hysteresis loss. The focus of this paper is the efficiency evaluation relative to hysteresis loss, copper loss, etc. on the basis of speed, load condition in a SynRM. Computer simulation and experimental result for the efficiency using dynamometer show the propriety of the proposed method.

  • PDF

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of SynRM according to the Rated Wattage using Response Surface Methodology (반응표면법을 이용한 동기형 릴럭턴스 전동기의 고토크밀도 및 저토크리플을 위한 용량별 최적설계)

  • Choi, Yun-Chul;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1777-1781
    • /
    • 2008
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Synchronous Reluctance Motor (SynRM) according to the rated wattage using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering of a number of interaction of design variables. The proposed procedure allows the definition of the rotor shape according to flux barrier number, starting from an existing motor or a preliminary design.

Maximum torque control of SynRM drive using ANN (ANN을 이용한 SynRM 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Park, Ki-Tae;Choi, Jung-Sik;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.311-315
    • /
    • 2007
  • In this paper, a new approach for the Synchronous Reluctance Motor control which ensures producing Maximum Torque per Ampere(MTPA) over the entire field weakening region is presented. In addition, This paper presents a speed sensorless control scheme of SynRM using artificial neural network. Also, by adjusting the base speed for the field weakening operation according to the flux level, the current and voltage limit, the smooth and precise transition into the field weakening operation can be achieved The proposed scheme is verified validity through simulation.

  • PDF

Efficiency Optimization Control for Field-Weakening Region of Synchronous Reluctance (동기 리럭턴스 전동기의 약계자 영역을 고려한 효율 최적화 제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Chung, Dong-Wha
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1169-1171
    • /
    • 2001
  • Synchronous reluctance motors(SynRM) for the application such as an electric vehicle, compressor drives of air conditioner and machine tool spindle drives require a wide field-weakening speed range. In order to improve the efficiency performance in such applications, this paper has examined the loss and the efficiency characteristics of SynRM mainly in the field-weakening speed region over the base speed. The control strategy in order to offer a efficiency optimization operation is shown and the copper and iron losses driven the equivalent circuit model of the machine is minimized. The usefulness of the proposed efficiency optimization control is verified through the SynRM durve system.

  • PDF