• Title/Summary/Keyword: Symmetric load

Search Result 226, Processing Time 0.02 seconds

THE DESIGN OF AN EFFICIENT LOAD BALANCING ALGORITHM EMPLOYING BLOCK DESIGN

  • Chung, Il-Yong;Bae, Yong-Eun
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.343-351
    • /
    • 2004
  • In order to maintain load balancing in a distributed system, we should obtain workload information from all the nodes on network. This processing requires $O(v^2)$ communication overhead, where v is the number of nodes. In this paper, we present a new synchronous dynamic distributed load balancing algorithm on a (v, k + 1, 1)-configured network applying a symmetric balanced incomplete block design, where $v\;=\;k^2$\;+\;k\;+\;1$. Our algorithm needs only $O(\sqrt[v]{v})$ communication overhead and each node receives workload information from all the nodes without redundancy. Therefore, load balancing is maintained since every link has the same amount of traffic for transferring workload information.

An Algorithm of SBIBD based Load Balancing Applicable to a Random Network (랜덤 네트워크에 적용 가능한 SBIBD기반의 부하 균형 알고리즘)

  • Lee, Ok-Bin;Lee, Yeo-Jin;Choi, Dong-Min;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.331-340
    • /
    • 2008
  • In order to make load balancing, workload information of nodes should be informed to the network. In a load balancing algorithm[13] based on the SBIBD(Symmetric Balanced Incomplete Block Design), each node receives global workload information by only two round message exchange with O (${\upsilon}{\sqrt{\upsilon}}$) traffic overhead, where ${\upsilon}$ is the number of nodes. It is very efficient but works well only when ${\upsilon}=p^2+p+1$ for a prime number p. In this paper, we generate a special incidence structure in order for the algorithm works well for an arbitrary number of nodes. In the experiment with w,($5{\leq}w{\leq}5,000$), nodes and more than 80% of receiving workload information, traffic overhead was less than O ($w{\sqrt{w}})$ and the result for standard deviation of traffic overhead showed that each node has largely balanced amount of traffic overhead.

  • PDF

The Analysis of Low Back Loading and Muscle Fatigue while Lifting an Asymmetric Load (비대칭무게중심을 지닌 물체 들기 작업시 허리부위 등근육 부하 및 피로 분석)

  • Han, Seung-Jo;Kim, Sun-Uk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.30-36
    • /
    • 2012
  • This study is aimed to show that an asymmetric load in the frontal plane leads to an increase in low back loading and fatigue in comparison with a symmetric load when workers lift an external weight by investigating previous studies and verifying the phenomenon with an experiment. Ten male subjects are required to lift and hold an given external load at 70cm height during 50sec, then the EMG amplitude and median frequency on bilateral low back muscle groups (Longissimus, Iliocostalis, and Multifidus) are recorded and analyzed. Independent variables are two-level load weight (13kg, 20kg) and three-level LCG (Center, 6.5cm to the right, and 13cm to the right), and dependent variables are EMG amplitude average, difference, and Fatigue Index (FI). Results show that load weight increases significantly amplitude average and FI, but LCG does significantly amplitude difference and FI significantly (P-value < 0.05). Also the correlation coefficient between amplitude difference and FI is over 0.99. These implies that trunk loading should be explained by not EMG amplitude but muscle fatigue aspect since the association between an external load and amplitude is linear, but the relationship between an external load and median frequency as muscle fatigue index is almost exponential.

Local buckling and shift of effective centroid of cold-formed steel columns

  • Young, Ben
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.235-246
    • /
    • 2005
  • Local buckling is a major consideration in the design of thin-walled cold-formed steel sections. The main effect of local buckling in plate elements under longitudinal compressive stresses is to cause a redistribution of the stresses in which the greatest portion of the load is carried near the supporting edges of the plate junctions. The redistribution produces increased stresses near the plate junctions and high bending stresses as a result of plate flexure, leading to ultimate loads below the squash load of the section. In singly symmetric cross-sections, the redistribution of longitudinal stress caused by local buckling also produces a shift of the line of action of internal force (shift of effective centroid). The fundamentally different effects of local buckling on the behaviour of pin-ended and fixed-ended singly symmetric columns lead to inconsistencies in traditional design approaches. The paper describes local buckling and shift of effective centroid of thin-walled cold-formed steel channel columns. Tests of channel columns have been described. The experimental local buckling loads were compared with the theoretical local buckling loads obtained using an elastic finite strip buckling analysis. The shift of the effective centroid was also compared with the shift predicted using the Australian/New Zealand and American specifications for cold-formed steel structures.

A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of the Flying Capacitor Multi-level Inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 이루기 위한 캐리어 비교방식의 대칭 기법)

  • 전재현;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.624-631
    • /
    • 2003
  • This paper presents a simple carrier symmetric method for the voltage balance of flying capacitors in FCMLI(flying capacitor multi-level inverter). To achieve the voltage balance of flying capacitors, the utilization of each carrier must be balanced during a half-cycle of the switching period such as PSPWM(Phase-Shifted PWM). However, the CRPWM(Carrier Redistribution PWM) method causes the fluctuation of flying capacitor voltages because the balanced utilization of carriers is not achieved. Moreover, it does not consider that the load current change has an influence on flying capacitor voltages by assuming that the current flows into the load. To overcome the drawbacks of CRPWM, it is modified by the technique that carriers of each band are disposed symmetrically at every fundamental period. Firstly, the CRPWM method is reviewed and the theory on voltage balance of flying capacitors is analyzed. The proposed method is introduced and is verified through the experiment result.

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of the Flying Capacitor Multi-level Iinverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 이루기 위한 캐리어 비교방식을 이용한 캐리어 대칭 기법)

  • Jeon J.H.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.606-610
    • /
    • 2003
  • This paper presents a simple carrier symmetric method for the voltage balance of flying capacitors in FCMLI(flying capacitor multi-level inverter). To achieve the voltage balance of flying capacitors, the utilization of each carrier must be balanced during a half-cycle of the switching period such as PSPWM(Phase-Shifted PWM). However, the CRPWM(Carrier Redistribution PWM) method causes the fluctuation of flying capacitor voltages because the balanced utilization of carriers is not achieved. Moreover, it does not consider that the load current change has an influence on flying capacitor voltages by assuming that the current flows Into the load. To overcome the drawbacks of CRPWM, it is modified by the technique that carriers of each band are disposed symmetrically at every fundamental period. Firstly, the CRPWN method is reviewed and the theory on voltage balance of flying capacitors is analyzed. The proposed method Is introduced and is verified through the experiment result.

  • PDF

Finite Element Analysis and Material Mechanics of Paper Angle (종이 앵글 포장재의 재료역학적 특성과 유한요소해석)

  • Park J. M.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.347-353
    • /
    • 2005
  • Paper angle, environment friendly packaging material, has been mainly used as an edge protector, But, in the future, paper angle will be applied to package design of heavy product such as strength reinforcement or unit load system (ULS). Therefore. understanding of buckling behavior fur angle itself, compression strength and quality standard are required. The objectives of this study were to characterize the buckling behavior by theoretical and finite element analysis, and to develop compression strength model by compression test for symetric and asymetric paper angle. Based on the result of theoretical and finite element analysis, as applied load level was bigger and/or the length of angle was longer, incresing rate of buckling of asymmetric paper angle was higher than that of symmetric paper angle. Decreasing rate of minimum principal moment of inertia significantly increased as the extent of asymmetric angle increased, and buckling orientation of angle was open- direction near the small web. Incresing rate of maximum compression strength (MCS) for thickness of angle decreased as the web size increased in symmetric angle. MCS of asymmetric angle of 43${\times}$57 and 33${\times}$67 decreased $15{\~}18\%$ and $65{\~}78\%$, and change of buckling increased $12{\~}13\%$ and $62{\~}66\%$, respectively.

Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.127-143
    • /
    • 2012
  • The present paper deals with the nonlinear analysis of the functionally graded piezoelectric (FGP) annular plate with two smart layers as sensor and actuator. The normal pressure is applied on the plate. The geometric nonlinearity is considered in the strain-displacement equations based on Von-Karman assumption. The problem is symmetric due to symmetric loading, boundary conditions and material properties. The radial and transverse displacements are supposed as two dominant components of displacement. The constitutive equations are derived for two sections of the plate, individually. Total energy of the system is evaluated for elastic solid and piezoelectric sections in terms of two components of displacement and electric potential. The response of the system can be obtained using minimization of the energy of system with respect to amplitude of displacements and electric potential. The distribution of all material properties is considered as power function along the thickness direction. Displacement-load and electric potential-load curves verify the nonlinearity nature of the problem. The response of the linear analysis is investigated and compared with those results obtained using the nonlinear analysis. This comparison justifies the necessity of a nonlinear analysis. The distribution of the displacements and electric potential in terms of non homogenous index indicates that these curves converge for small value of piezoelectric thickness with respect to elastic solid thickness.

Mechanical Behavior Analysis and Strength Standardization of Paper Angle (종이 앵글의 역학적 거동 분석과 강도 표준화 연구)

  • Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Paper angle, environment friendly packaging material, has been mainly used as an edge protector. But, we have perceived its application to package design of heavy product such as strength reinforcement or unit load system (ULS) in the future. Above all, understanding of buckling behavior for angle itself and compression strength and quality standard have to be accomplished for the paper angle to be used for this purpose. The purpose of this study was to elucidate the buckling behavior through theoretical and finite element analysis, and to develop compression strength model by compression test for symetric and asymetric paper angle. Based on the result of theoretical and finite element analysis, increasing rate of buckling of asymmetric paper angle was higher as applied load level was bigger and/or the length of angle was longer than that of symmetric paper angle. Decreasing rate of minimum principal moment of inertia was remarkably increased as the extent of asymmetric angle is bigger, and buckling orientation of angle was open direction near the small web. Increasing rate of maximum compression strength (MCS) for thickness of angle was smaller as the web size was bigger in symmetric angle. MCS of asymmetric angle of $43{\times}57$ and $33{\times}67$ was decreased $15{\sim}18%$ and $65{\sim}78%$, and change of buckling was increased $12{\sim}13%$ and $62{\sim}66%$, respectively.

  • PDF