• 제목/요약/키워드: Symmetric flame

검색결과 17건 처리시간 0.024초

정체 유동장에 떠있는 난류 예혼합 화염의 일차 모멘트 닫힘 모사 (First Moment Closure Simulation of Floating Turbulent Premixed Flames in Stagnation Flows)

  • 이은주;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.122-132
    • /
    • 2000
  • Computational fluid dynamic simulation is performed for the floating turbulent premixed flames stabilized in stagnation flows of Cho et al. [1] and Cheng and Shepherd [2]. They are both in the wrinkled flamelet regime far from the extinction limit with $u'/S^{0}_{L}$ less than unity. The turbulent flux is given in the first moment closure as a sum of the classical gradient flux due to turbulent motions and the countergradient flux due to thermal expansion. The parameter $N_{B}'s$ are greater than unity with the countergradient flux dominant over the gradient flux. The countergradient flux is assumed to be zero in $\bar{c}<0.05$. The flame surface density is modeled as a symmetric parabolic function with respect to $\bar{c}$. The product of the maximum flame surface density and the mean stretch factor is considered as a tuning constant to match the flame location. Good agreement is achieved with the measured $\tilde{w}$ and $\bar{c}$ profiles along the axis in both flames.

  • PDF

메탄/공기 예혼합화염에서 CARS를 이용한 CO 농도 및 온도측정과 수치해석 결과의 비교 (Comparison of CARS CO and Temperature Measurements with Numerical Calculation for Methane/Air Premixed Flames)

  • 강경태;정석호;박승남
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1333-1339
    • /
    • 1995
  • Recently developed technique of measuring minor species concentration by using the modulation dip in broadband CARS has been applied to the flame structure study of methane/air premixed flames in a counterflow. This method used the modulation dip from the cold band CO Q-branch resonant signal superimposed on the nonresonant background. The measured CO concentration profile in a symmetric and unsymmetric methane/air premixed flames together with the velocity and temperature by using LDV and CARS have been compared with the numerical results adopting detailed chemistry modeling. The results show that there is a satisfactory agreement between the experimental data and numerical results for velocities, temperatures and CO concentrations. And the modulation dip technique of measuring minor species, such as CO is a viable tool for a quantitative measurement in a flame.

단일 알루미늄 연료 입자의 점화 및 연소 모델링 (Modeling of the Ignition and Combustion of Single Aluminum Particle)

  • 양희성;임지환;김경무;이지형;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.187-192
    • /
    • 2008
  • A simplified model for an isolated aluminum particle burning in air is presented. Burning process consists of two stages, ignition and quasi-steady combustion (QSC). In ignition stage, aluminum which is inside of oxide film melts owing to the self heating called heterogeneous surface reaction (HSR) as well as the convective and radiative heat transfer from ambient air until the particle temperature reaches melting point of oxide film. In combustion stage, gas phase reaction occurs, and quasi-steady diffusion flame is assumed. For simplicity, 1-dimesional spherical symmetric condition and flame sheet assumption are also used. Extended conserved scalar formulations and modified Shvab-Zeldovich functions are used that account for the deposition of metal oxide on the surface of the molten aluminum. Using developed model, time variation of particle temperature, masses of molten aluminum and deposited oxide are predicted. Burning rate, flame radius and temperature are also calculated, and compared with some experimental data.

  • PDF

연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션 (Computational Simulation of Combustion in Power Plant Boiler Acconling to Un-Even Combustion Air)

  • 고영건;최상민;김영주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.137-144
    • /
    • 2006
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션 (Computational Simulation of Combustion in Power Plant Boiler According to Un-Even Combustion Air)

  • 고영건;최상민;김영주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.85-92
    • /
    • 2005
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

유류 연소 발전용 보일러에서 공기 공급 계통의 불균일성에 관한 실험적 연구 (An Experimental Study on the Non-Uniform Flow Distribution in the Windbox of an Oil-Fired Boiler)

  • 고영건;김영주;최상민
    • 한국연소학회지
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Oil-fired power plant usually uses several burners and combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner uniformly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and non-uniform supplies of combustion air are induced by these unbalanced flows in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in a windbox and measured the velocities at the exit of burners in a real windbox and model tests to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric. Additionally some modifications of windbox shape and installation of baffles were proposed to make the uniform flow in the windox.

  • PDF

Numerical Modeling for Combustion and Soot Formation Processes in Turbulent Diffusion Flames

  • Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.116-124
    • /
    • 2002
  • In order to investigate the soot formation and oxidation processes, we employed the two variable approach and its source terms representing soot nucleation, coagulation, surface growth and oxidation. For the simulation of the taxi-symmetric turbulent reacting flows, the pressure-velocity coupling is handled by the pressure based finite volume method. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical models used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reacting flow field.