• Title/Summary/Keyword: Symmetric Axis

Search Result 156, Processing Time 0.024 seconds

Effect of Process Parameters in Electromagnetic Forming Apparatus on Forming Load by FEM (유한요소해석을 통한 전자기 성형장비 공정변수의 성형력에 미치는 영향)

  • Noh, Hak Gon;Park, Hyeong Gyu;Song, Woo Jin;Kang, Beom Soo;Kim, Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.733-740
    • /
    • 2013
  • The high-velocity electromagnetic forming (EMF) process is based on the Lorentz force and the energy of the magnetic field. The advantages of EMF include improved formability, wrinkle reduction, and non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for the EMF process. A 2-D axis-symmetric electromagnetic model was used, based on a spiral-type forming coil. In the numerical simulation, an RLC circuit was coupled to the spiral coil to measure various design parameters, such as the system input current and the electromagnetic force. The simulation results show that even though the input peak current levels were at the same level in each case, the forming condition varied due to differences in the frequency of the input current. Thus, the electromagnetic forming force was affected by the input current frequency, which in turn, determined the magnitude of the current density and the magnetic flux density.

Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory

  • Behera, Susanta;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.213-232
    • /
    • 2018
  • First time, an exact solution for free vibration of the Levy-type rectangular laminated plate is developed considering the most efficient Zig-Zag theory (ZIGT) and third order theory (TOT). The plate is subjected to hard simply supported boundary condition (Levy-type) along x axis. Using the equilibrium equations and the plate constitutive relations, a set of 12 m first order differential homogenous equations are obtained, containing displacements and stress resultant as primary variables. The natural frequencies of a single-layer isotropic, multi-layer composites and sandwich plates are tabulated for three values of length-to-thickness ratio (S) and five set of boundary conditions and further assessed by comparing with existing literature and recently developed 3D EKM (extended Kantorovich method) solution. It is found that for the symmetric composite plate, TOT produces better results than ZIGT. For antisymmetric and sandwich plates, ZIGT predicts the frequency for different boundary conditions within 3% error with respect to 3D elasticity solution while TOT gives 10% error. But, ZIGT gives better predictions than the TOT concerning the displacement and stress variables.

A Study on the Bubble Behavior in the Vertical-upward Gas Injection (수직상향 기체주입시 기포거동에 관한 연구)

  • Seo, Dong-Pyo;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.712-716
    • /
    • 2003
  • In the present study, the gas injection system based on air-water model was designed to investigate the behavior characteristics of bubbles injected into a ladle. The parameters such as gas volume fraction and bubble rise velocity were exprementally measured in a gas-liquid flow region. To measure gas volume fraction, an electo-conductivity probe was used and bubble rise velocity was obtained by a high speed CCD camera. Gas volume fraction was symmetric to the axis of nozzle secured on the bottom of a ladle. The bubble rise velocity was calculated for two different experimental conditions. That is, gas flow conditions were following two case: 1) Q = $0.63{\times}10^{-4}$ $m^{3}/s$, 2) $1.26{\times}10^{-4}$ $m^{3}/s$. As a gas injected into the liquid ladle, the liquid-phase region is circulated by bubbles' behavior. The bubble rise velocity was influenced of the circulation flow of liquid phase. As a result, the bubble rise velocity was appeared higher middle region of ladle than near the nozzle.

  • PDF

A Study on the Disintegration and Spreading Behavior of Fuel-spray Emanating from a Liquid-thruster Injector by Pseudo-3D Spatial Distribution Measurement (준3차원적 공간분포 계측에 의한 액체추력기 인젝터 연료분무의 분열 및 확산 거동에 관한 연구)

  • Kim, Jin-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-17
    • /
    • 2008
  • Pseudo-3D spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-propellant thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio ($L/d_o$) of 1.67 and under the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray. Although the distribution of spray characteristic parameters is symmetric against the geometric axis of nozzle orifice, their absolute values are asymmetric.

Seismic Traveltime Tomography in Inhomogeneous Anisotropic Media (불균질 이방성 매질에서의 탄성파 주시 토모그래피)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.209-214
    • /
    • 2007
  • In Korean geology that crystalline rock is dominant, the properties of subsurface including the anisotropy are distributed complexly and changed abruptly. Because of such geological environments, cross-hole seismic traveltime tomography is widely used to obtain the high resolution image of the subsurface for the engineering purposes in the geotechnical sites. However, because the cross-hole tomography has a wide propagation angle coverage relatively, its data tend to include the seismic velocity anisotropy comparing with the surface seismic methods. It can cause the misinterpretation that the cross-hole seismic data including the anisotropic effects are analyzed and treated with the general processing techniques assuming the isotropy. Therefore, we need to consider the seismic anisotropy in cross-hole seismic traveltime tomography. The seismic anisotropic tomography algorithm, which is developed for evaluation of the velocity anisotropy, includes several inversion schemes in order to make the inversion process stable and robust. First of all, the set of the inversion parameters is limited to one slowness, two ratios of slowness and one direction of the anisotropy symmetric axis. The ranges of the inversion parameters are localized by the pseudo-beta transform to obtain the reasonable inversion results and the inversion constraints are controlled efficiently by ACB(Active Constraint Balancing) method. Especially, the inversion using the Fresnel volume is applied to the anisotropic tomography and it can make the anisotropic tomography more stable than ray tomography as it widens the propagation angle coverage.

  • PDF

Fekete-Szegö Problem for a Generalized Subclass of Analytic Functions

  • Orhan, Halit;Yagmur, Nihat;Caglar, Murat
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.1
    • /
    • pp.13-23
    • /
    • 2013
  • In this present work, the authors obtain Fekete-Szeg$\ddot{o}$ inequality for certain normalized analytic function $f(z)$ defined on the open unit disk for which $$\frac{{\lambda}{\beta}z^3(L(a,c)f(z))^{{\prime}{\prime}{\prime}}+(2{\lambda}{\beta}+{\lambda}-{\beta})z^2(L(a,c)f(z))^{{\prime}{\prime}}+z(L(a,c)f(z))^{{\prime}}}{{\lambda}{\beta}z^2(L(a,c)f(z))^{{\prime}{\prime}}+({\lambda}-{\beta})z(L(a,c)f(z))^{\prime}+(1-{\lambda}+{\beta})(L(a,c)f(z))}\;(0{\leq}{\beta}{\leq}{\lambda}{\leq}1)$$ lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by Hadamard product (or convolution) are given. As a special case of this result, Fekete-Szeg$\ddot{o}$ inequality for a class of functions defined through fractional derivatives are obtained.

Optical Compensation of IPS-LCD for Symmetric-High-Contrast at Off-Axis Oblique View (측면시야각에서의 대칭적 명암대비비 향상을 위한 IPS-LCD 광학보상)

  • Kim, Tae-Hyeon;Kim, Bong-Sik;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • In this study, we proposed an optical compensation method to improve the symmetricity of contrast ratio for wide viewing angle IPS (in-plane switching) LCD. First, the phase retardation depending on the thickness of compensation film is calculated, and then the phase change is presented at the $Poincar{\acute{e}}$ sphere. The phase retardation and the polarization state of the light passing through the optical elements are caculated by using the EJMM (extended Jones matrix method). In addition, the transmittance and the contrast countour are also calculated by using the Berremann's $4{\times}4$ matrix method. The simulation is carried out for a IPS LC cell with positive A/C/A compensation film. From the standard deviation of the contrast ratio, we confirmed the symmetricity at each viewing angle is inversely proportional to the standard deviation and calculated the optimum design condition of the uniaxial compensation film for the IPS LCD.

Vectorial Solutions of the Eigenmodes of the Waveguide with Semicircular Cross-Section (반원형 단면을 갖는 광도파로의 고유모우드의 벡터해)

  • 양순철
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.309-316
    • /
    • 1993
  • We find the vectorial solution of the optical waveguide with semicircular cross-section by expanding the electromagnetic fields of the waveguide into the series of trigonometric and Bessel funtions and by applying the boundary conditions at the finitely selected points on the interface of the core and the cladding. We find also the propagation constants and the energy distributions of the eigenmodes and discuss its properties. As a result of computation, we find that the electromagnetic fields of the even modes about the symmetric axis of the semircular shape are nearly the same as those of the odd modes except that E and H of the odd modes are replaced by -H and E and that the even and odd modes are degenerated as the ratio of refractive index of the core and cladding approaches to 1.

  • PDF

A Study on the Thermal Characteristics of Spindle for the Spinning Machine (스피닝 머신용 대형주축의 열특성에 관한 연구)

  • Jeong D.S.;Kim S.T.;Choi D.B.;Ye S.B.;Seol S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.555-559
    • /
    • 2005
  • Spinning process is a chipless metal forming method for axis-symmetric parts, which is more economical, efficient and versatile method for producing parts than other sheet metal forming process such as stamping or deep drawing. The large-sized spindle for spinning machine is the equipment to ferm a high-pressure vessel into the demanded shape. The important problem in the spindle system fur spinning machines is to reduce and minimize the thermal effect by motor and bearings. In this study, the effect of heat generation of bearings for the large-sized spindle is considered. Temperature distribution and thermal displacement of the spindle system for spinning machine can be analyzed by using the finite element method. The numerical results are compared with the measured data. The results show that temperature distribution and thermal displacement can be reasonably estimated by using the finite element method and the three dimensional model.

  • PDF

Compensation of Inclined Rotating Axis Using Unsymmetric Groove Patterns (비대칭 Groove를 이용한 FDB 회전축의 기울기 보상)

  • Lee, Nam-Hun;Han, Jae-Hyuk;Oh, Dong-Ho;Kim, Chul-Soon;Byun, Yong-Kyu;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.582-585
    • /
    • 2004
  • Most of hard disk drives currently employ fluid dynamic bearing (FDB) for their rotor support. Stiffness of the FDB is affected by many design factors such as bearing clearance, fluid viscosity, and rotational speed. For the high rotating speed HDDs stiffness of the rotor is normally high enough to accomodate load disturbances. However small form factor HDDs that are to be operated in low power consumption are often designed with low stiffness rotors. Although the low stiffness rotor clearly benefits low power operation, it could damage the entire motor structure or head disk interface even by a light mechanical load disturbance such as shock or vibration. In addition, since a single channel HDD does not provide gram load equilibrium in axial direction the rotor could be tilted and make a hard contact to stator. A non-symmetric groove pattern could successfully compensate the tilted rotor angle during operation.

  • PDF