• Title/Summary/Keyword: Symbol Information

Search Result 1,298, Processing Time 0.029 seconds

Research on the PAPR Reduction Method using Selection of Extra Code Set in PB/MC-CDMA System (PB/MC-CDMA 시스템에서 여분의 코드집합을 이용한 PAPR 감쇄기법에 관한 연구)

  • Lee, Kyu-Jin;Lee, Dong-Joon;Lee, Kye-San;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.110-118
    • /
    • 2009
  • The PB/MC-CDMA(Partial Block Multi Carrier Code Division Multilple Access) system can improve the performance by reducing the ICI(Inter-Code Interference) between users. Also, this system can achieve the frequency diversity gain by avoiding ISI(Inter Symbol Interference). Therefore, the performance of PB/MC-CDMA system is better than that of conventional MC-CDMA(Multi Carrier Code Division Multiple Access) system. However, similarly to other multi-carrier systems, it still has a PAPR(Peak to Average Power Ratio) issue. In this paper, we propose a peak power reduction technique involving optimized spreading code selection without side information for the PB/MC-CDMA. The PB/MC-CDMA system in each block of units reuses the code so the extra code will be remained. This extra code is divided into several groups to calculate the PAPR and solving the PAPR problem by transferring the selected code which has minimum peak power.

  • PDF

The Performance Evaluation of Parallel and Single Structure MCMA-MDD Adaptive Equalizer for 16-QAM Signal (16-QAM 신호에대한 병렬 구조와 단일 구조를 갖는 MCMA-MDD 적응 등화기의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.15-22
    • /
    • 2012
  • This paper deals with the performance comparison and evaluation of blind adaptive equalizer, the PMCMA-MDD and DW-MCMA, that is used for compensation of the amplitude and phase distortion which occurs in the time dispersive channel. Basically, these algorithms are modification of MCMA cost function in order to obtain the fast convergence speed and reduced residual isi by taking the parallel and serial double structured and the combination of the concept of RCA for the updating the tap coefficient. We implements the algorithm of it and compare the recovered constellation, residual isi, MSE characteristics curve and SER in the signal to noise ratio given the time dispersive channel. As a result of simulation, the PMCMA-MDD has a good in recovered constellation than DW-MCMA. But in the SER, the DW-MCMA has a good than PMCMA-MDD.

A Performance Evaluation of mDSE-MMA Adaptive Equalization Algorithm in QAM Signal (QAM 신호에서 mDSE-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2020
  • This paper related with the performance evaluation of mDSE-MMA adaptive equalization algorithm which is possible to reduce the distortion that occurs in nonlinear communication channel like as additive noise, intersymbol interference and fading when transmitting the QAM signal. The DSE-MMA algorithm is possible to reduce the computational load compared to the presently MMA algorithm, it has the degraded equalization performance by this. In order to improve the performance degradation of DSE-MMA, the mDSE-MMA controls the step size according to the existence of arbitrary radius circle of equalizer output is centered at transmitted symbol point. The performance of proposed mDSE-MMA algorithm were compared to present DSE-MMA using the same channel and noise environment by computer simulation. For this, the recoverd signal constellation which is the output of equalizer, residual isi and MD, MSE learning curve which is represents the convergence performance and SER were applied as performance index. As a result of simulation, the mDSE-MMA has more superior to the DSE-MMA in every performance index.

An Intercell Interference Reduction Technique for OFDM-based Cellular Systems Using Virtual Multiple Antenna (OFDM 기반 셀룰러 시스템에서 가상 다중안테나를 이용한 셀간 간섭 감쇄 기법)

  • Lee Kyu-In;Ko Hyun-Soo;Ahn Jae-Young;Cho Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.32-38
    • /
    • 2006
  • In this paper, an intercell interference (ICI) reduction technique is proposed for OFDM-based cellular systems using the concept of virtual multiple antenna where multiple antenna techniques are performed on a set of subcarriers, not on the actual antenna array. The proposed technique is especially effective for user terminals with a single antenna at cell boundary in fully-loaded OFDM cellular systems with a frequency reuse factor equal to 1. Proposed ICI reduction techniques developed for SISO and MISO environments are shown to be robust to symbol timing offsets and efficient for various cell environments by adjusting group size depending on the number of adjacent cells. Also, the concept of a virtual signature randomizer (VSR) is introduced to improve channel separability in the virtual MIMO approach. It is shown by simulation that the proposed techniques are effective in reducing ICI and inter-sector interference compared with the conventional methods.

A Simple Multi-rate Parallel Interference Canceller for the IMT-2000 3GPP System (IMT-2000 3GPP 시스템을 위한 간단한 다중 전송률 병렬형 간섭제거기)

  • Kim, Jin-Kyeom;Oh, Seong-Keun;Sunwoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.10-19
    • /
    • 2001
  • In this paper, we propose an effective but simple multi-rate parallel interference canceller(PIC) for the international mobile telecommunications-2000(IMT-2000) 3rd generation partnership project (3GPP) system. For effective multi-rate processing, we define the basic block as one symbol period of the dedicated physical control channel(DPCCH) having the lowest data rate and common to all users. Then, decision and interference cancellation are performed at every basic block. For an asynchronous channel, we propose an advance removal scheme that removes in advance multiple access interference(MAI) due to the next blockof other users with shorter delay. Introducing a pipeline structure at a sample base, we can implement efficiently the PIC using the advance removal scheme with a minimum hardware and no extra computations. Through computer simulations, we analyze the bit error rate(BER) performance of the proposed PIC with respect to signal-to-noise ratio(SNR) and the number of users.

  • PDF

Linear Precoding Technique for AF MIMO Relay Systems (증폭 후 재전송 MIMO 중계 시스템을 위한 선형 전처리 기법)

  • Yoo, Byung-Wook;Lee, Kyu-Ha;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.16-21
    • /
    • 2010
  • In this paper, the linear source and relay precoders are designed for AF MIMO relay systems. In order to minimize mean squared error (MSE) of received symbol vector, the source and relay precoders are proposed, and MMSE receiver which is suitable to those precoders is utilized at the destination node. As the optimal precoders for source and relay nodes are not represented in closed form and induced by iterative method, we suggest a simple precoder design scheme. Simulation results show that the performance of the proposed precoding scheme is comparable with that of optimal scheme and outperforms other relay precoding schemes. Moreover, in high SNR region, it is revealed that SNR between source and relay node is more influential than SNR between relay and destination node in terms of bit error rate.

Design of an Efficient Binary Arithmetic Encoder for H.264/AVC (H.264/AVC를 위한 효율적인 이진 산술 부호화기 설계)

  • Moon, Jeon-Hak;Kim, Yoon-Sup;Lee, Seong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.66-72
    • /
    • 2009
  • This paper proposes an efficient binary arithmetic encoder for CABAC which is used one of the entropy coding methods for H.264/AVC. The present binary arithmetic encoding algorithm requires huge complexity of operation and data dependency of each step, which is difficult to be operated in fast. Therefore, renormalization exploits 2-stage pipeline architecture for efficient process of operation, which reduces huge complexity of operation and data dependency. Context model updater is implemented by using a simple expression instead of transIdxMPS table and merging transIdxLPS and rangeTabLPS tables, which decreases hardware size. Arithmetic calculator consists of regular mode, bypass mode and termination mode for appearance probability of binary value. It can operate in maximum speed. The proposed binary arithmetic encoder has 7282 gate counts in 0.18um standard cell library. And input symbol per cycle is about 1.

Design of H.264/AVC CABAC Encoder with an Efficient Storage Reduction of Syntax Elements (구문 요소의 저장 공간을 효과적으로 줄인 H.264/AVC CABAC 부호화기 설계)

  • Kim, Yoon-Sup;Moon, Jeon-Hak;Lee, Seong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.34-40
    • /
    • 2010
  • This paper proposes an efficient CABAC encoder to reduce syntax element storage in H.264/AVC entropy coding. In the proposed architecture, all blocks are designed in dedicated hardware, so it performs fast processing without programmable processors. Context modeler of CABAC encoder requires the neighbor block data. However it requires impractically huge memory size if the neighbor block data is directly stored without proper processing. Therefore, this paper proposes an effective method of storing the neighbor block data to decrease memory size. The proposed CABAC encoder has 35,463 gates in 0.18um standard cell library. It operates at maximum speed of 180MHz and its throughput is about 1 cycle per input symbol.

Design and Analysis of Dual Band I/Q Modulator For Wireless LAN (무선랜용 이중대역 I/Q 모듈레이터의 설계 및 특성 해석)

  • Park, Hyun-Woo;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • A dual band I/Q modulator which converts baseband input signals to 2.4GHz or 5GHz RF output has been proposed. The dual band I/Q modulator for 2.4GHz and 5GHz wireless LAN applications consists of $90^{\circ}$ phase shifter and wideband mixer. The I/Q modulator showed 15dB conversion loss at 2.4GHz and 16dB conversion loss at 5GHz. The sideband suppression is about 15dBc at 2.4GHz and 16dBc at 5GHz. Measured data shows 8.5% EVM at 2.4GHz, and 10% EVM at 5GHz for QPSK with symbol rate of 11Mbps. A carrier rejection is about 40dBc at 2.4GHz/5GHz band, and the I/Q modulator satisfied the output wireless LAN spectrum mask with baseband input signal.

The Application of High Order Modulation Scheme in the Mobile Communication System (이동 통신 환경에서 고차원 변조 방식의 적용)

  • Seo, In-Kwon;Won, Se-Young;Kim, Young-Lok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.156-161
    • /
    • 2007
  • In a TDD system, the length of slots can be unequal, and the number of downlink (DL) and uplink (UL) slots per frame can be different as well. The advantage of using TDD is the capability to accommodate asymmetric high-bit-rate services for the DL and It, which will be one of the prominent features in 4G systems. This paper analyzes the performance of TDD system on mobile channel environments like indoor pedestrian and vehicular channel, and proposes optimum modulation/demodulation method in TDD system. A rectangular QAM (RQAM) used in various communication systems has good BER performance but the much more signal amplitudes also have become one of the barriers to implement receiver. While PSK receiver is implemented easily because it has a constant amplitude, but it's BER performance is worse than RQAM. APSK proposed in this paper integrates merits of RQAM and PSK, and minimizes demerits of then And a simple method is also proposed to demodulate the soft symbol. The results indicate that the proposed APSK has a little worse performance than RQAM but the dynamic range of APSK is about 4 dB, 8 dB better than RQAM at 16-ary, 64-ary modulation/demodulation respectively.