• Title/Summary/Keyword: Symbiotic Star

Search Result 33, Processing Time 0.022 seconds

Simultaneous Observations of SiO and $H_2O$ Masers toward Symbiotic Stars

  • Cho, Se-Hyung;Kim, Jae-Heon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.79.2-79.2
    • /
    • 2010
  • We present the results of simultaneous observations of SiO v=1, 2, J=1-0, $^{29}SiO$ v=0, J=1-0, and $H_2O$ $6_{16}-5_{23}$ maser lines performed with the KVN Yonsei 21 m radio telescope from 2009 Nov. to 2010 Jan (ApJ, 719, 126, 2010). We searched for these masers in 47 symbiotic stars and detected maser emission from 21 stars, giving the first time detection from 19 stars. Both SiO and $H_2O$ masers were detected from seven stars of which six stars are D-type symbiotic and one is an S-type star, WRAY 15-1470. In the SiO maser emission, the $^{28}SiO$ v=1 maser was detected from 10 stars, while the v=2 maser detected from 15 stars. In particular, the $^{28}SiO$ v=2 maser emission without the v=1 maser detection was detected from nine stars with its detection rate of 60 %, which is much higher than that of isolated Miras/red giants. The $^{29}SiO$ v=0 maser emission was also detected from two stars, H 2-38 and BF Cyg, together with the $^{28}SiO$ v=2 maser. We conclude that these different observational results between isolated Miras/red giants and symbiotic stars may be related with the presence of hot companions in a symbiotic binary system.

  • PDF

Monitoring Observations of Active White Dwarf Binary Systems

  • Lee, Hee-Won;Choi, Bo-Eun;Im, Myungshin;Lim, Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.60.3-60.3
    • /
    • 2019
  • Binary systems of a white dwarf showing mass transfer activities are classified into cataclysmic variables and symbiotic stars. In the case of cataclysmic variables, the companion is usually a late type main sequence star filling its Roche lobe, where material is transferred through the inner Lagrangian point to form an accretion disk around the white dwarf. The disk becomes unstable and highly viscous when the surface density exceeds the critical density, leading to dwarf nova outbursts. In contrast, symbiotic stars are wide binary systems having a giant as the mass donor. Some fraction of giant stellar wind is accreted to the white dwarf giving rise to various symbiotic activities. In particular, half of symbiotics show Raman O VI at 6830 and 7088, which are important spectroscopic probe of mass transfer process. Monitoring observations using 1 m class telescopes will produce valuable information regarding the mass loss and mass transfer to white dwarf stars, shedding much light on the last stage of stellar evolution of low and intermediate mass stars.

  • PDF

High resolution spectroscopic monitoring of emission lines of symbiotic star AG Draconis

  • Kim, Soo Hyun;Yoon, Tae Seog;Oh, Hyung-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.72.2-72.2
    • /
    • 2019
  • 보현산 천문대 1.8-m 망원경과 고분산 에셀 분광기 BOES를 이용하여 장기간 관측한 공생별 AG Draconis 방출선들의 모니터링을 통해 분광학적 특성을 보이고자 한다. 특히, 공생별 AG Draconis의 활동성 및 등급 변화에 따른 중성수소 Balmer 선과 주요 원소에 의한 방출선들의 특징과 변화 양상에 대해 살펴본다.

  • PDF

THE SPECTROSCOPIC CHARATERISTICS OF 23 SYMBIOTICS (23개 공생별의 분광학적 특성)

  • KIM YEOJEONG;HYUNG SIEK;ALLER LAWRENCE H.
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.133-145
    • /
    • 2000
  • Symbiotic stars are known as binary systems with both cool and hot components with enshrounding nebulous gas. The cool component, M-type giant, is presumably loosing its mass into a hot white or main sequence companion star through the inner Lagrangian point. The lines emit from the ionized nebulous region around the hot star while the mass loss or accretion activity is believed to be the main cause of sudden variation of the continuum and line fluxes. We selected 17 symbiotics for which the emission line fluxes were measured from the IUE SWP, LWR data, to find variability of spectrum. We also investigated the periodic variation of emissions or eclipsing effect from the IUE lines. All of our symbiotics show very high electron densities in the emission regions. For other optical symbiotics, the observations had been carried in 1999 with BOAO mid-resolution spectrometer. We classified symbiotics based on their outburst activities, or emission line characteristics, i.e., $OVI{\lambda}6830.\;The\;OVI{\lambda}6830$ emission lines are also found in S-type symbiotics, which have been known as charateristics of D-types.

  • PDF

Stellar Wind Accretion and Raman O VI Spectroscopy of the Symbiotic Star AG Draconis

  • Lee, Young-Min;Lee, Hee-Won;Lee, Ho-Gyu;Angeloni, Rodolfo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.63.4-64
    • /
    • 2018
  • High resolution spectroscopy of the yellow symbiotic star AG Draconis is performed with the Canada-France-Hawaii Telescope to analyse the line profiles of Raman scattered O VI broad emission features at $6825{\AA}$ and $7082{\AA}$ with a view to investigating the wind accretion process from the mass losing giant to the white dwarf. These two spectral features are formed through inelastic scattering of O $VI{\lambda}{\lambda}32$ and 1038 with atomic hydrogen. We find that these features exhibit double-component profiles with red parts stronger than blue ones with the velocity separation of ~ 60 km s-1 in the O VI velocity space. Monte Carlo simulations for O VI line radiative transfer are performed by assuming that the O VI emission region constitutes a part of the accretion flow around the white dwarf and that Raman O VI features are formed in the neutral part of the slow stellar wind from the giant companion. The overall Raman O VI profiles are reasonably fit with an azimuthally asymmetric accretion flow and the mass loss rate ~ 4 ${\times}$ 10^{-7} M_sun yr^{-1}. We also find that additional bipolar neutral regions moving away with a speed ~ 70 km s^{-1} in the directions perpendicular to the orbital plane provide considerably improved fit to the red wing parts of Raman features.

  • PDF

RAMAN SPECTROSCOPY IN SYMBIOTIC STARS (공생별에서 라만 산란선의 형성)

  • LEE HEE-WON
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.103-112
    • /
    • 2000
  • Symbiotic stars are known as binary systems of a giant with heavy mass loss and a white dwarf accompanied by an emission nebula. They often show bipolar nebulae, and are believed to form an accretion disk around the white dwarf component by attracting the slow but heavy stellar wind around the giant companion. However, the existence and physical properties of the accretion disk in these systems still remain controversial. Unique to the spectra of symbiotic stars is the existence of the symbiotic bands around $6830{\AA}$ and $7088{\AA}$, which have been identified by Schmid (1989) as the Raman scattered features of the O VI $1032{\AA}$ and $1038{\AA}$ doublet by atomic hydrogen. Due to the incoherency of the Raman scattering, these features have very broad profiles and they are also strongly polarized. In the accretion disk emission model, it is expected that the Raman features are polarized perpendicular to the binary axis and show multiple peak structures in the profile, because the neutral scatterers located near the giant component views the accretion disk in the edge-on direction. Assuming the presence of scattering regions outflowing in the polar directions, we may explain the additional red wing or red peak structure, which is polarized parallel to the binary axis. We argue that in the accretion disk emission model it is predicted that the profile of the Raman feature around $6830{\AA}$ is different from the profile of the $7088{\AA}$ because the O VI line optical depth varies locally around the white dwarf component. We conclude that the Raman scattered features are an important tool to investigate the physical conditions and geometrical configuration of the accretion disk in a symbiotic star.

  • PDF

KVN MONITORING OBSERVATIONS TOWARD THE RECENT OUTBURST SYMBIOTIC STAR V407 CYGNI

  • CHO, SE-HYUNG;KIM, JAEHEON;YUN, YOUNGJOO
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.267-275
    • /
    • 2015
  • Simultaneous time monitoring observations of H2O and SiO maser lines were performed toward the D-type symbiotic binary system V407 Cyg with the Korean VLBI Network single dish radio telescope. These monitoring observations were carried out from March 2, 2010 (optical phase ϕ = 0.0), 8 days before the nova outburst on March 10, 2010 to June 5, 2014 (ϕ = 2.13). Eight days before the nova outburst, we detected the SiO v = 1, 2, J = 1–0 maser lines which exhibited values of 0.51 K (∼ 6.70 Jy) and 0.71 K (∼ 9.30 Jy), respectively, while after the outburst we could not detect them on April 2 (ϕ = 0.04), May 5 (ϕ = 0.09), May 8 (ϕ = 0.09), or on June 5, 2010 (ϕ = 0.13) within the upper limits of our KVN observations. After restarting our monitoring observations, we detected SiO v = 2, J = 1–0 masers starting on October 20, 2011 (ϕ = 0.83) and detected SiO v = 1, J = 1–0 masers starting on December 22, 2011 (ϕ = 0.92). These results provide clear evidence of the interaction between the shock from the nova outburst and the SiO maser regions of the Mira envelope. The peak emission of SiO v = 1, 2, J = 1–0 masers always occurred at blueshifted velocities with respect to the stellar velocity except for that of SiO v = 1 at one epoch. These phenomena may be related to the redistribution of SiO maser regions after the outburst. The peak velocity variations of SiO masers associated with stellar pulsation phases show an increasing blueshifted trend during our monitoring interval after the outburst.

ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI

  • Heo, Jeong-Eun;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.