• Title/Summary/Keyword: Switching controller

Search Result 828, Processing Time 0.023 seconds

Sliding Mode Control of Spacecraft with Actuator Dynamics

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.169-175
    • /
    • 2002
  • A sliding mode control of spacecraft attitude tracking with actuator, especially reaction wheel, is presented. The sliding mode controller is derived based on quaternion parameterization for the kinematic equations of motion. The reaction wheel dynamic equations represented by wheel input voltage are presented. The input voltage to wheel is calculated from the sliding mode controller and reaction wheel dynamics. The global asymptotic stability is shown using a Lyapunov analysis. In addition the robustness analysis is performed for nonlinear system with parameter variations and disturbances. It is shown that the controller ensures control objectives for the spacecraft with reaction wheels.

Digital Control of Phase-Shifted Full-Bridge PWM Converter

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.201-209
    • /
    • 2008
  • This paper presents the modeling and design of a digital controller for a phase-shifted full-bridge converter (PSFBC) in a discrete-time domain. The discretized PSFBC model is first derived and then analyzed considering the sampling effect and the system parameters. Based on this model, the digital controller is directly designed in a discrete-time domain. The simulation and experimental results are provided to show the validity of the proposed modeling and controller design.

Design of Control System for Electric Vehicles (ELECTRIC VEHICLES을 위한 제어시스템 설계)

  • 노창주;김윤식;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.80-86
    • /
    • 1993
  • This paper presents an advanced AC drive system used in electric vehicles. The system consists of a drive motor, a PWM transistorized inverter, a PCL-812PG data card, and a controller. This paper describes a design method for RSPWMSS and PID controller. This controller system is implemented on computer and applied to drive motor(induction motor), yielding satisfactory result.

  • PDF

Linerly Graded Encoder for High Resolution Angle Control of SRM Drive

  • Lee, Sang-Hun;Lim, Heon-Ho;Park, Sung-Jun;Ahn, Jin-Woo;Kim, Cheul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.185-192
    • /
    • 2001
  • In SRM drive, the ON·OFF angles of each phase switch should be accurately controlled in order to control the torque and speed stably. The accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor, that are used to provide the information of the rotor position and to control the SRM power circuit, respectively. However, as the speed increases, the amount of the switching angle deviation from the preset values is also increased. Therefore, the low cost encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper, As a result, a stable high speed SRM drive can be achieved by the high resolution switching angle control and it is verified from the experiments that the proposed encoder the logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

Current Decoupling Control for the Three-level PWM Rectifier with a Low Switching Frequency

  • Yuan, Qing-Qing;Xia, Kun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.280-287
    • /
    • 2015
  • Three-level PWM rectifiers applied in medium voltage applications usually operate at low switching frequency to keep the dynamic losses under permitted level. However, low switching frequency brings a heavy cross-coupling between the current components $i_d$ and $i_q$ with a poor dynamic system performance and a harmonic distortion in the grid-connecting current. To overcome these problems, a mathematical model based on complex variables of the three-level voltage source PWM rectifier is firstly established, and the reasons of above issues resulted from low switching frequency have been analyzed using modern control theory. Then, a novel control strategy suitable for the current decoupling control based on the complex variables for $i_d$ and $i_q$ is designed here. The comparisons between this kind of control strategy and the normal PI method have been carried out. MATLAB and experimental results are given in detail.

Sensitivity Analysis of Power System Oscillation Modes Induced by Periodic Switching Operations of SVC by the RCF Method (RCF 기법을 이용한 SVC의 주기적 스위칭 동작에 의한 전력계통 진동모드 감도해석)

  • Kim, Deok-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.363-368
    • /
    • 2008
  • In this paper, the Resistive Companion Form(RCF) analysis method is applied to analyze small signal stability of power systems including thyristor controlled FACTS equipments such as SVC. The eigenvalue sensitivity analysis algorithm in discrete systems based on the RCF analysis method is presented and applied to the power system including SVC. As a result of simulation, the RCF analysis method is proved very effective to precisely calculate the variations of eigenvalues or newly generated unstable oscillation modes after periodic switching operations of SVC. Also the eigenvalue sensitivity analysis method based on the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of controller parameters about the dominant oscillation mode after periodic switching operations in discrete systems. These simulation results are different from those of the conventional continuous system analysis method such as the state space equation and proved that the RCF analysis method is very effective to analyze the discrete power systems including periodically operated switching equipments such as SVC.

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.

An Improvement Parallel to the Efficiency of Boost Converter for Power Factor Correction (PFC용 부스트 컨버터의 병렬화에 의한 효율 개선)

  • 전내석;장수형;전일영;박영산;안병원;이성근;김윤식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.120-124
    • /
    • 2001
  • A new technique for improving the efficiency of single-phase high-frequency boost converter is proposed. This converter includes an additional low-frequency boost converter which is connected to the main high-frequency switching device in parallel. The additional converter is controlled at lower frequency. Most of the current flows in the low-frequency switch and so, high-frequency switching loss is greatly reduced accordingly Both switching device are controlled by a simple method; each controller consists of a one-shot multivibrator, a comparator and an AND gate. The converter works cooperatively in high efficiency and acts as if it were a conventional high-frequency boost converter with one switching device. The proposed method is verified by simulation. This paper describes the converter configuration and design, and discusses the steady-state performance concerning the switching loss reduction and efficiency improvement.

  • PDF

A New Current Controlled PWM technique for NPC Inverter (NPC 인버터를 위한 새로운 전류제어 기법)

  • 이병송;김길동;변윤섭;한영재;박현주
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.63-69
    • /
    • 1998
  • A new current controlled PWM technique with NPC structure is proposed in this paper. A current controlled PWM technique with neutral-point-clamped pulse-width modulation inverter composed of main switching devices which operates as switch for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential is described. The proposed current controller has a first and second current band. The switching pattern will be made by the first current band. According to the second current band, the output state of the switching pattern is changed into positive and negative state. This inverter output contains less harmonic content and lower switching frequency than that of conventional current controlled PWM technique at the same current limit. Two inverters are compared analytically and the performance is investigated by the computer simulation.

  • PDF

Design of Digital Position Controller for DC Motors Using Variable Structure Control System (가변구조 제어계통에 의한 직류 전동기의 위치제어기 설계)

  • 박귀태;송명현;강대린
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.228-236
    • /
    • 1989
  • The theroy of variable structure control system (VSS) is applied to the position control for DC servo-motors. In order to use the microcomputer as a control device, the principles of VSS for the continuous-time system are extended to the discrete-time system. A new switching law is proposed to achieve the reduction of chattering. It adds a new switching structure to the conventional switching sturctures. This switching region is set near and including the conventional switching curve. The new algorithm is obtained for single-input second order system, and applied to the position control of a DC servo-motor. Experimental results show that the transient behavior is improved due to the reduction of chattering and good robustness properties are demonstrated.

  • PDF