• 제목/요약/키워드: Switching Power Module

검색결과 247건 처리시간 0.021초

소형 전원용 스위칭 파워 모듈 (Switching Power Module for a Small-Sized Electric Power Source)

  • 김병철
    • 한국정보통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.1068-1073
    • /
    • 2004
  • 전원장치의 소형화 핵심기술인 반도체 스위칭 기술을 이용하여 5 V/500 mA급 트랜스리스형 파워모듈(transless type power module)을 설계하였다. 파워 모들은 강압형 chopper 방식을 이용하였으며, 스위칭회로, 제어회로, 전압검출회로, 그리고 정전압 회로 등으로 구성되어 었다. 본 연구에서 설계한 스위칭 파워모듈은 0.2 V의 load regulation, 0.1 V의 line regulation, 85 mVp-p의 output ripple 전압, 64.7 kHz의 스위칭 주파수, 최대 58% 정도의 효율을 나타내었으며, 신뢰성 및 EMC 평가항목을 만족하였다.

전원장치의 소형화와 고효율화를 위한 스위칭 파워 모듈의 제작과 특성에 관한 연구 (A Study on the Characteristics and Fabrication of Switching Power Module for High Efficiency and Small Size of Power Supply System)

  • 김찬;전의석;강도영;김병철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.758-761
    • /
    • 2003
  • 전원장치의 소형화 핵심기술인 반도체 스위칭 기술을 이용하여 단일 전원을 사용하는 소형, 경량화 전자기기에 적합한 5 V/500 mA급 트랜스리스형 파워 모듈(transless type power module)을 설계하였다. 파워 모듈은 강압형 chopper 방식을 이용한 스위칭회로, 제어회로, 전압검출회로, 그리고 정전압 회로 둥으로 구성되어 있으며, 하이브리드-집적회로형(hybrid-IC type)으로 제작되었다. 본 연구에서 설계한 스위칭 레귤레이터 전원회로는 5 V/500 mA급 트랜스리스형 파워 모듈의 전기적 특성을 만족하였다.

  • PDF

SiC 전력반도체의 병렬 구동 시 전류 불균형을 최소화하는 Mezzanine 구조의 방열일체형 스위칭 모듈 개발 (Development of Switching Power Module with Integrated Heat Sink and with Mezzanine Structure that Minimizes Current Imbalance of Parallel SiC Power Semiconductors)

  • 이정호;민성수;이기영;김래영
    • 전력전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.39-47
    • /
    • 2023
  • This paper applies a structural technique with uniform parallel switch characteristics in gates and power loops to minimize the ringing and current imbalance that occurs when a general discrete package (TO-247)-based power semiconductor device is operated in parallel. Also, this propose a heat sink integrated switching module with heat sink design flexibility and high power density. The developed heat dissipation-integrated switching module verifies the symmetry of the parasitic inductance of the parallel switch through Q3D by ansys and the validity of the structural technique of the parallel switch using the LLC resonant converter experiment operating at a rated capacity of 7.5 kW.

Three-Phase Soft Switching Sinewave Inverter with Bridge Power Module Package Configurated Auxiliary Resonant AC Link Snubber

  • Iyomori Hisashi;Nagai Shin-ichiro;Shiraishi Kazuhiro;Ahmed Tarek;Eiji Hiraki;Mutsuo Nakaoka
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.507-510
    • /
    • 2003
  • This paper presents a novel prototype of tile three-phase bridge power block module type a auxiliary resonant AC link snubber circuit, which is effectively used for the three-phase voltage source type sinewave soft switching PWM inverter using IGBTs. Its operating principle Is described for current source load model, along with its practical design approach based on the simulation data. The performance evaluation of the three-phase voltage source type snewave soft switching PWM inverter incorporating a single three-phase bridge mo여le of active auxiliary resonant AC link snubber treated here Is illustrated, which is concerned with power duality efficiency power loss analysis. This inverter is discussed as compared with those of tile three-phase voltage source type sinewave hard switching PWM inverter. The power loss analysis of this soft switching PWM Inverter using IGBT power modules is evaluated on the basis of the measured v-i characteristics and switching power losses of IGBT, and antiparaliel diodes. The practical effectiveness of this inverter is proven by the power loss analysis for distributed power supply.

  • PDF

AC 모듈형 태양광 모듈 집적형 컨버터를 위한 소프트 스위칭 DC-DC 컨버터 (Soft Switching DC-DC Converter for AC Module Type PV Module Integrated Converter)

  • 윤선재;김영호;정용채;원충연
    • 전력전자학회논문지
    • /
    • 제18권3호
    • /
    • pp.247-255
    • /
    • 2013
  • In this paper, a soft switching DC-DC converter for AC module type photovoltaic (PV) module integrated converter is proposed. A push-pull converter is suitable for a low voltage PV AC module system because the step-up ratio of a high frequency transformer is high and the number of primary side switches is relatively small. However, the conventional push-pull converters do not have high efficiency because of high switching losses by hard switching and transformer losses (copper and iron losses) by high turns-ratio of the transformer. In the proposed converter, primary side switches are turned on at zero voltage switching (ZCS) condition and turned off at zero current switching (ZVS) condition through parallel resonance between secondary leakage inductance of the transformer and a resonant capacitor. Therefore the proposed push-pull converter decreases the switching loss using soft switching of the primary switches. Also, the turns-ratio of the transformer can be reduced by half using a voltage-doubler of secondary side. The theoretical analysis of the proposed converter is verified by simulation and experimental results.

Power Module Bridge Type Auxiliary Resonant AC Link Snubber-Assisted Three-Phase Soft Switching Inverter

  • Hisashi Iyomori;Nagai, Shin-ichiro;Masanobu Yoshida;Eiji Hiraki;Mutsuo Nakaoka
    • Journal of Power Electronics
    • /
    • 제4권2호
    • /
    • pp.77-86
    • /
    • 2004
  • This paper presents a novel three-phase power module bridge type auxiliary resonant AC link snubber for the three-phase voltage-fed sinwave soft switching PWM inverter operating under specific instantaneous space voltage vector modulation. The operating principle of this resonant snubber is described for current source load model during one switching period, along with its design approach based on the simulation data. The performance evaluations of space vector modulation three-phase sinewave soft switching inverter with a new three-phase active auxiliary resonant AC link snubber are discussed as compared with those of three-phase voltage source-fed sinewave hard switching PWM inverter with a standard space voltage vector modulation strategy. The power loss analysis and conventional efficiency estimation of three-phase soft switching PWM inverter using ICBT modules are carried out including all the conduction power losses based upon the measured v-i characteristics of IGBT and its antiparallel diode as well as their switching losses.

유도 가열에 적용되는 새로운 PWM 고주파 인버터의 특성 (Characteristics of New PWM High Frequency Inverter Applied to Induction Heating)

  • 유의정;이상욱;문상필;박한석
    • 전기학회논문지P
    • /
    • 제67권2호
    • /
    • pp.63-69
    • /
    • 2018
  • In this paper, the operation principle of a bi-directional switch type resonant AC link snubber circuit was described, together with the practical design procedure, which employs in the proposed power module bridge package type resonant AC link snubber. The novel prototype of power module bridge package type resonant AC link snubber-assisted voltage type sinewave soft switching PWM inverter using IGBT power module was demonstrated herein. It was verified that both the auxiliary power switches in this resonant AC link snubber circuit and the main power switches commutate under the condition of soft switching commutation principle. In addition, the power losses of the new soft switching inverter treated here were analyzed by implementing the experimental data of the IGBT and diode v-i characteristics in addition to switching power loss characteristics into our original computer simulation software developed by the authors. Then, the voltage type sinewave soft switching PWM inverter was high efficiency than that of hard switching PWM inverter, along with performance operation waveforms. In the future, the comparative feasibility study of power module bridge type resonant AC link snubber and its related soft switching inverter in addition to the other types resonant snubber assisted soft switching inverter should be done from a practical point of view.

Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System

  • Son, Gum Tae;Lee, Soo Hyoung;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1471-1481
    • /
    • 2014
  • This paper presents the new power dissipation model of individual switching device in a high-level modular multilevel converter (MMC), which can be mostly used in voltage sourced converter (VSC) based high-voltage direct current (HVDC) system and flexible AC transmission system (FACTS). Also, the voltage balancing method based on sorting algorithm is newly proposed to advance the MMC functionalities by effectively adjusting switching variations of the sub-module (SM). The proposed power dissipation model does not fully calculate the average power dissipation for numerous switching devices in an arm module. Instead, it estimates the power dissipation of every switching element based on the inherent operational principle of SM in MMC. In other words, the power dissipation is computed in every single switching event by using the polynomial curve fitting model with minimum computational efforts and high accuracy, which are required to manage the large number of SMs. After estimating the value of power dissipation, the thermal condition of every switching element is considered in the case of external disturbance. Then, the arm modeling for high-level MMC and its control scheme is implemented with the electromagnetic transient simulation program. Finally, the case study for applying to the MMC based HVDC system is carried out to select the appropriate insulated-gate bipolar transistor (IGBT) module in a steady-state, as well as to estimate the proper thermal condition of every switching element in a transient state.

스마트 전력모듈을 사용한 100 kVA 급 인버터 개발 (Development of 100 KVA Inverter Using Smart Power Module)

  • 정윤이;정규범;이주광;정교범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.117-118
    • /
    • 2014
  • This paper presents a new smart power module for 100[kVA] inverter. In the inverter, the three smart modules are used and those are installed at the each pole of the inverter. Each module receives the switching functions from the inverter main controller, and generates duty ratio for IGBTs' switching of the pole. For the reliable operation of the inverter, CAN communication is used for transferring the switching functions form the main controller to the modules. Experiments verify the performance of the smart power module installed in 100[KVA] inverter.

  • PDF

New Resonant AC Link Snubber-Assisted Three-Phase Soft-Switching PWM Inverter and Its Comparative Characteristics Evaluations

  • Yoshida, Masanobu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.239-248
    • /
    • 2003
  • This paper presents a novel prototype of three-phase voltage source type zero voltage soft-switching inverter with the auxiliary resonant snubbers suitable for high-power applications with IGBT power module packages in order to reduce their switching power losses as well as electromagnetic conductive and radiative noises. A proposed single inductor-assisted resonant AC link snubber circuit topology as one of some auxiliary resonant commutation snubbers developed previously to achieve the zero voltage soft-switching (ZVS) for the three-phase voltage source type sinewave PWM inverter operating under the instantaneous space voltage vector modulation is originally demonstrated as compared with the other types of resonant AC link snubber circuit topologies. In addition to this, its operation principle and unique features are described in this paper. Furthermore, the practical basic operating performances of the new conceptual instantaneous space voltage vector modulation resonant AC link snubber-assisted three-phase voltage source type soft-switching PWM inverter using IGBT power module packages are evaluated and discussed on the basis of switching voltage and current waveforms, output line to line voltage quality, power loss analysis, actual power conversion efficiency and electromagnetic conductive and radiative noises from an experimental point of view, comparing with those of conventional three-phase voltage source hard-switching PWM inverter using IGBT power modules.