• Title/Summary/Keyword: Switching Mechanism

Search Result 336, Processing Time 0.026 seconds

Performance Evaluation of a Cell Reassembly Mechanism with Individual Buffering in an ATM Switching System

  • Park, Gwang-Man;Kang, Sung-Yeol;Han, Chi-Moon
    • ETRI Journal
    • /
    • v.17 no.1
    • /
    • pp.23-36
    • /
    • 1995
  • We present a performance evaluation model of cell reassembly mechanism in an ATM switching system. An ATM switching system may be designed so that communications between processors of its control part can be performed via its switching network rather than a separate inter-processor communications network. In such a system, there should be interface to convert inter-processor communication traffic from message format to cell format and vice versa, that is, mechanisms to perform the segmentation and reassembly sublayer. In this paper, we employ a continuous-time Markov chain for the performance evaluation model of cell reassembly mechanism with individual buffering, judicially defining the states of the mechanism. Performance measures such as message loss probability and average reassembly delay are obtained in closed forms. Some numerical illustrations are given for the performance analysis and dimensioning of the cell reassembly mechanism.

  • PDF

Electrical Switching Mechanism of the Sintering Oxides (산화물 소결체에서 전기적 Switching 기구)

  • 조동산;김화택
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.3
    • /
    • pp.135-139
    • /
    • 1978
  • Sintering oxide which was prepared by sintering at $1200^{\circ}C$ the mixture of ${\gamma}$-$Fe_2O_3$ and $Sb_2O_3$ in 2 : 1 mol ratio, showed 1st electrical switching and stable 2nd switching when D.C. voltage was applied. This electrical switching mechanism was known to be thermal mechanism from dependence of environmental temperature of threshold Voltage(Vm), Current(Im) and the conductivity of the current filament of the sintering oxide.

  • PDF

A Study on the Design of Hardware Switching Mechanism using TCP/IP Communication (TCP/IP를 이용한 하드웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Lim, Sang-Soo;Ahn, Jong-Min;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.694-702
    • /
    • 2007
  • The SSWM(Software Switching Mechanism) of I-processor concept using non-real time in-house software simulation program is an effective method in order to develop the flight control law in desktop or HQS environment. And, this system has some advantages compare to HSWM(Hardware Switching Mechanism) such as remove the time delay effectiveness and reduce the costs of development. But, if this system loading to the OFP(Operational Flight Program), the OFP guarantee the enough throughput in order to calculate the two control law at once. Therefore, the HSWM(Hardware Switching Mechanism) of 2-processor concept is necessary. This paper addresses the concept of HSWM of the HQS-PC interface using TCP/IP(Transmission Control Protocol/Internet Protocol) communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed in order to reduce the abrupt transient response and minimize the integrator effect in pitch axis. The result of the analysis based on HQS pilot simulation using HSWM reveals that the flight control systems are switching between two computers without any problem.

A Study on the Conversion Time to Minimize of Transient Response during Inter-Conversion between Control Laws (제어법칙 간 상호 전환 시 과도응답 최소화를 위한 전환시간에 관한 연구)

  • Kim, Chongsup
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • The inter-conversion between different control laws in flight has a lot of risk. The SWM(Switching Mechanism) including logic and stand-by mode is designed to analyze the transient response of aircraft during inter-conversion between different control laws, based on the in-house software for non-real-time and real-time simulation. The SWM applies the fader logic of TFS(Transient Free Switch) to minimize the transient response of an aircraft during the inter-conversion, and applies the reset '0' type of the stand-by mode to prevent surface saturation due to integrator effect in the disengaged flight control law. The transition time is also important to minimize the objectionable transient response in the inter-conversion, as well as the transition control law design. This paper addresses the results of non-real-time simulation for the characteristics of transient response to different transition time to select the adequate transient time, and the real-time pilot evaluation, using SSWM(Software Switching Mechanism) and HSWM(Hardware Switching Mechanism), which is met for Level 1 flying qualities and assures safety of flight.

Low-Complexity Energy Efficient Base Station Cooperation Mechanism in LTE Networks

  • Yu, Peng;Feng, Lei;Li, Zifan;Li, Wenjing;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3921-3944
    • /
    • 2015
  • Currently Energy-Saving (ES) methods in cellular networks could be improved, as compensation method for irregular Base Station (BS) deployment is not effective, most regional ES algorithm is complex, and performance decline caused by ES action is not evaluated well. To resolve above issues, a low-complexity energy efficient BS cooperation mechanism for Long Time Evolution (LTE) networks is proposed. The mechanism firstly models the ES optimization problem with coverage, resource, power and Quality of Service (QoS) constraints. To resolve the problem with low complexity, it is decomposed into two sub-problems: BS Mode Determination (BMD) problem and User Association Optimization (UAO) problem. To resolve BMD, regional dynamic multi-stage algorithms with BS cooperation pair taking account of load and geographic topology is analyzed. And then a distributed heuristic algorithm guaranteeing user QoS is adopted to resolve UAO. The mechanism is simulated under four LTE scenarios. Comparing to other algorithms, results show that the mechanism can obtain better energy efficiency with acceptable coverage, throughput, and QoS performance.

Priority-Based Duplicate Burst Transmission Mechanism in Optical Burst Switching Networks

  • Um, Tai-Won;Vu, Hai-L.;Choi, Jun-Kyun;Ryu, Won
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.164-166
    • /
    • 2008
  • This paper proposes a priority-based duplicate burst transmission mechanism in an optical burst switching network to enhance the probability of successful reception of bursts. The performance of the proposed mechanism is evaluated by NS2 simulations. Our results show that the burst loss rate is improved especially under light traffic loads.

  • PDF

The robust controller design for linear multivariable servo mechanism using switching dynamics (스위칭 동태방정식을 이용한 선형 다변수서보메카니즘에 대한 견고한 제어기 설계)

  • 박귀태;곽군평;김동식;최중경;주영중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.535-540
    • /
    • 1989
  • This paper presents an approach for designing a linear multivariable servo mechanism for the case of constant and time varying disturbances. In this paper, we use an "observer-based" approach to consider the disturbance vector as states of the system and the resulting servomechanism design involves the design of an asymptotic observer which estimates both the actual plant states and the disturbance states. The design makes use of switching dynamics instead of switching logics to obtain the sliding mode and from the switching dynamics we can remove the undesirable chattering phenomena.phenomena.

  • PDF

Balanced Buck-Boost Switching Converter to Reduce Common-Mode Conducted Noise

  • Shoyama Masahito;Ohba Masashi;Ninomiya Tamotsu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.212-216
    • /
    • 2001
  • Because conventional switching converters have been usually using unbalanced circuit topologies, parasitic capacitance between the drain/collector of an active switch and the frame ground through its heat sink may generate the common-mode conducted noise. We have proposed a balanced switching converter circuit, which is an effective way to reduce the common-mode conducted noise. As an example, a boost converter version of the balanced switching converter was presented and the mechanism of the common-mode noise reduction was explained using equivalent circuits. This paper extends the concept of the balanced switching converter circuit and presents a buck-boost converter version of the balanced switching converter. The feature of common-mode noise reduction is confirmed by experimental results and the mechanism of the common-mode noise reduction is explained using equivalent circuits.

  • PDF

A Study on the Design and Validation of Switching Control Law (전환제어법칙 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • The flight control law designed for prototype aircraft often leads to degraded stability and performance, although developed control law verify by non-real time simulation and pilot based evaluations. Therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS (In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV (High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA (Variable stability In flight Simulation Test Aircraft) programs. The IFS necessary switching control law such as fader logic and integrator stand-by mode to reduce abrupt transient and minimize the integrator effect for each flight control laws switching. This paper addresses the concept of switching mechanism with fader logic of "TFS (Transient Free Switch)" and stand-by mode of "feedback type" based on SSWM (Software Switching Mechanism). And the result of real-time pilot evaluation reveals that the aircraft is stable for inter-conversion of flight control laws and transient response is minimized.

Load Aware Automatic Channel Switching for Software-Defined Enterprise WLANs

  • Han, Yunong;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5223-5242
    • /
    • 2017
  • In the last decade, the 2.4 GHz band of IEEE 802.11 WLANs has become heavily congested due to the explosive increase in demand of Wi-Fi connectivity. With the current deployment of enterprise WLANs, channel switching mechanism continues to exhibit inefficiencies because it cannot adapt to real-time channel condition and the inability to support seamless channel switching. Software Defined Networking (SDN) as an emerging architecture is promising to introduce flexibility and programmability for wireless network management. Leveraging SDN to existing enterprise WLANs, channel switching method can be improved significantly. This paper presents a software-defined enterprise WLAN framework with a load aware automatic channel switching solution, which utilizes AP load and channel interference factor (CIF) to provide seamless channel switching. Two automatic channel switching algorithms named Single Switch (SS) and Double Switch (DS) are proposed to improve the overall user experience and the experience of users with highest traffic load respectively. Experiment results demonstrate that our solution can efficiently improve user experience in terms of jitter, transmission delay and network throughout when compared to the conventional channel switching mechanism.