• Title/Summary/Keyword: Switching Element

Search Result 295, Processing Time 0.027 seconds

A Study on the Foreign Entry Strategy of Korean Mineral Water Industry (한국 생수산업의 해외시장진출 전략에 관한 연구)

  • Hong, Song-Hon
    • International Commerce and Information Review
    • /
    • v.12 no.4
    • /
    • pp.363-382
    • /
    • 2010
  • It should be unthinkable to not provide water at survival of any living things. Water is too a basic element for development for a country. Currently, the global market of mineral water is growing rapidly. This study, I conceptualized mineral water as bottled water. In particularly, bottled water has seen huge global growth for the last few years. The annual growth rate of the market in the period 2005-2009 was 5.9%. Following a surge in obesity and subsequent health and wellness trends, many consumers are switching from sugary soft drinks to healthier alternatives. Therefore, the global bottled water market is one area which has big potential for growth, but price competition is getting intensified among multi-national and domestic firms. Korean providers too are faced with strong competition in growing domestic market. The bottled water market has presence of multinational provider like Nestle, Danone and Coca-Cola, which collectively account for 35.1% of the world market share in 2009. On the basis of a market orientation approach, this article looks at changing environments in the world mineral water industry and attempts to describe foreign market entry strategy of the Korean mineral water industry. The market orientation provides strong norms for learning from customers and competitors, is instrumental in creating a superior value for buyers, innovating successfully, and generating excellent firm performance. So firms should consider a strategic planning in basis on market orientation before they enter foreign markets. Some discussions were made about managerial implications for Korean bottled water providers.

  • PDF

Acoustic Noise Characteristics of Inductor According to Magnetic Powder Core Building Structure for Inverter Application (분말 자성 코어의 형상에 따른 인버터용 인덕터의 소음특성)

  • Yoo, Kwang-Yong;Lee, Byoung-Kuk;Kim, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1591-1599
    • /
    • 2017
  • In power electronics applications which switching frequency is below audible frequency, the acoustic noise and vibration design of magnetics are as important as the efficiency. In the case of the powder core, which is widely used in grid-connected inverters, many researches have been progressed in terms of efficiency. However, there are only few research have been progressed related with acoustic noise and vibrations. In this paper, the Sendust(Fe-Si-Al) powder core material which has low magnetostriction and low core loss is analyzed in terms of acoustic noise and vibration induced by Maxwell force and magnetostriction. Three building structures such as, rectangular, toroidal, and oval shape are designed for 4kW grid-connected inverter, because magnetic properties and the audible noises of the inductor are varied by magnetic core building structures. The effects of the Maxwell force and magnetostriction behaviors varied with core shapes are analyzed by finite element method and experiments. In addition, experiment results of the inductor efficiency are presented according to core building structures.

A High Efficiency, High Power-Density GaN-based Triple-Output 48V Buck Converter Design (GaN MOSFET을 이용한 고밀도, 고효율 48V 버스용 3-출력 Buck Converter 설계)

  • Lee, Sangmin;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a 70 W buck converter using GaN metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. This converter exhibits over 97 % efficiency, high power density, and 48 V-to-12 V/1.2 V/1 V (triple output). Three gate drivers and six GaN MOSFETs are placed in a 1 ㎠ area to enhance power density and heat dissipation capacity. The theoretical switching and conduction losses of the GaN MOSFETs are calculated. Inductances, capacitances, and resistances for the output filters of the three buck converters are determined to achieve the desired current, voltage ripples, and efficiency. An equivalent circuit model for the thermal analysis of the proposed triple-output buck converter is presented. The junction temperatures of the GaN MOSFETs are estimated using the thermal model. Circuit operation and temperature analysis are evaluated using a circuit simulation tool and the finite element analysis results. An experimental test bed is built to evaluate the proposed design. The estimated switch and heat sink temperatures coincide well with the measured results. The designed buck converter has 130 W/in3 power density and 97.6 % efficiency.

A Study on the Characteristics of High-Current Arc Plasma Influenced by Axial Magnetic Field (축방향 자기장에 의한 대전류 아크 특성에 관한 연구)

  • Cho, S.H.;Lee, J.C.;Choi, M.J.;Kwon, J.R.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2515-2518
    • /
    • 2008
  • The vacuum interrupter (VI) is widely used in medium-voltage switching circuits due to its abilities and advantages as an environmental friendly circuit breaker. An understanding of the vacuum arc flow phenomena is very important for improving the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and the thermal flow fields, simultaneously. In this study, we have investigated arc plasma constriction phenomena and an effect of AMF on the arc plasma with the high-current vacuum arcs for the cup-type AMF electrode by using a commercial finite element analysis (FEA) package, ANSYS. The simulation results applied with various AMFs and constant Joule heat generation show that strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. However, further studies are required on the two-way coupling method and radiation model for arc plasma in order to accomplish the advanced analysis method.

  • PDF

HSPICE Macro-Model and Midpoint-Reference Generation Circuits for MRAM (MRAM용 HSPICE 마크로 모델과 midpoint reference 발생 회로에 관한 연구)

  • 이승연;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.105-113
    • /
    • 2004
  • MRAM uses magneto-resistance material as a storage element, which stores cell data as a polarization of spin in a free magnetic layer. This magneto-resistance material has hysteresis, asteroid curve at the thermal variation, and R-V characteristics for switching the data. Therefore, a macro-model which can reproduce these characteristics is required for MRAM simulation. We propose a macro-model of TMR (Tunneling Magneto Resistance) that can reproduce all of these characteristics on HSPICE. Also we propose a novel sensing scheme, which generates reference resistance having the medium value, ( $R_{H}$+ $R_{L}$)/2, for a wide range of applied voltage and present simulation results based on the HSPICE macro-model of MTJ that we have developed.d.d.

Design and Torque Ripple Analysis of Brush-less DC Motor According to Delta Winding Connection

  • Lee, Tae-Yong;Seo, Myung-Ki;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.166-175
    • /
    • 2015
  • In this study, we describe the design method of a Brush-less DC (BLDC) motor with delta winding connection. After designing delta winding connection model with the $60^{\circ}$ flat-top region of the Back Electro-Motive Force (BEMF), an ideal current source analysis and a voltage source analysis, with a 6-step control, were conducted primarily employing Finite Element Method. In addition, as a current controller, we considered the Current Regulator with PI controller using Simulink for the comparison of torque characteristics. When the input current is controlled, the switching regions and reference signals are determined by means of the phase BEMF zero-crossing point. In reality, the input current variation depends on the inductance as well as input voltage, and it causes a torque ripple after all. Therefore, each control method considered in this research showed different torque ripple results. Based on the comparison, the causes of the torque ripple have been verified in detail.

Output Power Control of Permanent Magnet Wind Power Generator with Space Voltage Vector Current Control Strategy (공관전압벡터 전류제어기법을 이용한 영구자석형 풍력발전기의 출력제어)

  • Choi, Jong-Seog;Kim, Si-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.361-364
    • /
    • 2000
  • In this study, the system which can make the generator's output voltage more stable by using the inverter in terms of PWM method, is designed It is one of the method reducing velocity of the wind in the process of the wind power generation. Thus, in this system, it is necessary to use a excellent current control inverter. So pulse with modulation method with a high-speed switching element is introduced to control the output current. And also, in order to get a fast response when the standard current generated by the vector control algorithm is supplied with the generator, the output control system with the fast response character and the best current control character is suggested. In this way, the result from the introduction of the control system is that a response character to the changable velocity of the wind is excellent, causing the remarkable reduction of the percentage of the harmonic and the outstanding stability of the variation of the output voltage.

  • PDF

A Study on the Comparison of SRMs with 3 Rotor Poles (3개의 회전자 극을 갖는 SRM의 비교 연구)

  • Bae, Jun-Kyung;Oh, Seok-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.92-97
    • /
    • 2014
  • The SRM is a doubly salient, singly excited machine. The torque is developed by the tendency for the magnetic circuit to adopt a configuration of minimum reluctance, i.e. for the rotor to move into in line with the stator poles and to maximize the inductance of the coils excited. It is common practice to combine them into groups of poles which are excited simultaneously; for example, 8/6 SRM (8 stator poles and 6 rotor poles) for 4 phases, 6/4, 12/8 SRM for 3 phases, 4/2, 6/3 SRM for 2 phases. Small number of phases in two-phase SRMs allows more cost savings with regards to the switching devices in the converter. The stator back irons of two phase 6/3 SRM and C-core 4/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited. In this study, the similarities, the differences, and structural characteristics between the two SRMs was studied, The magnetic analysis also has been carried out by the finite element method analysis (FEM).

Efficiency Optimization with a Novel Magnetic-Circuit Model for Inductive Power Transfer in EVs

  • Tang, Yunyu;Zhu, Fan;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.309-322
    • /
    • 2018
  • The technology of inductive power transfer has been proved to be a promising solution in many applications especially in electric vehicle (EV) charging systems, due to its features of safety and convenience. However, loosely coupled transformers lead to the system efficiency not coming up to the expectation at the present time. Therefore, at first, the magnetic core losses are calculated with a novel magnetic-circuit model instead of the commonly used finite-element-method (FEM) simulations. The parameters in the model can be obtained with a one-time FEM simulation, which makes the calculation process expeditious. When compared with traditional methods, the model proposed in the paper is much less time-consuming and relatively accurate. These merits have been verified by experimental results. Furthermore, with the proposed loss calculation model, the system is optimized by parameter sweeping, such as the operating frequency and winding turns. Specifically, rather than a predesigned switching frequency, a more efficiency-optimized frequency for the series-parallel (SP) compensation topology is detected and a detailed investigation has been presented accordingly. The optimized system is capable of an efficiency that is greater than 93% at a coil separation distance of 200mm and coil dimensions of $600mm{\times}400mm$.

A Study on the Characteristic Analysis of NUDFET by FEM (FEM에 의한 NUDFET의 특성해석에 관한 연구)

  • Kim, Jong-Ryeul;Jung, Jong-Chuck;Kim, Young-Cig;Sung, Man-Young;Cho, Ho-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1247-1249
    • /
    • 1993
  • In this paper, NUDFET(NonUniformly Doped Field Effect Transistor) is presented as an alternative which offers the possibility of reducing the power necessary to operate switching circuits without a substantial loss in speed. The purpose of this NUDFET is to modify the electric field profile in order to cause carrier velocity saturation to occur at a lower voltage than it would occur in the uniformly doped device of the same channel length. The more MESFET and NUDFET circuits are realized, the more accurate model ins the performance of these devices become required. Analytic model ins was replaced by numerical analysis because of the complexity of device configuration. In this paper, FEM is selected because of simpler local mesh refinement and smaller computer memory than FDM. For accurate analysis, this paper has applied the Scharfetter-Gummel(S-G) Scheme and seven-point Gaussian Quadrature rule to assembly of the finite-element stiffness matrices and right-hand side vector of the semiconductor equations.

  • PDF