• 제목/요약/키워드: Swirl brake

검색결과 8건 처리시간 0.025초

스월 브레이크가 장착된 래버린스 씰의 동특성 해석 (Rotordynamic Analysis of Labyrinth Seal with Swirl Brake)

  • 이정인;서준호
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.63-69
    • /
    • 2022
  • In this research, the rotordynamic characteristics of the labyrinth seal with and without swirl brake were predicted using the computational fluid dynamic (CFD) model. Based on previous studies, a simple swirl brake consisting of square vanes without stagger angle is designed and placed in front of the seal inlet. The rotating frame of reference is utilized to consider the whirling motion of the rotor in the steady-state analysis since the whirling motion is transient behavior in nature. CFD analysis was performed in the range of -1 to 1 pre-swirl ratio for a given seal and swirl brake design and operating conditions. The CFD analysis result shows that the swirl brake effectively reduces the pre-swirl since the circumferential fluid velocity of labyrinth seal with swirl brake was lower than that without swirl brake. The cross-coupled stiffness coefficient, which is greatly affected by the circumferential fluid velocity, increased with an increasing pre-swirl ratio in a seal without a swirl brake but showed a low value in a seal with a swirl brake. The change in the damping coefficient was relatively small. The effective damping coefficient of the labyrinth seal with swirl brake was generally constant and showed a higher value than the labyrinth seal without swirl brake.

흡기포트 선회비 변경에 따른 유동특성 및 엔진성능에 관한 연구 (A Study on the Flow Characteristics and Engine Performance with Swirl Ratio Variance of Intake Port)

  • 윤준규;차경옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.899-905
    • /
    • 2000
  • The characteristics of air flow and engine performance with swirl ratio variance of intake port In a turbocharged DI diesel engine was studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer and NOx, smoke were measured by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. And as the swirl ratio is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio.

  • PDF

과급 디젤엔진에서 선회비 변경에 따른 흡기 포트유동 및 엔진성능 특성에 관한 연구 (A Study on the Characteristics of Intake Port Flow and Performance with Swirl Ratio Variance in a Turbocharged D.I. Diesel Engine)

  • 윤준규;차경옥
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1185-1194
    • /
    • 2000
  • The characteristics of intake port flow and engine performance with swirl ratio variance in a turbocharged D.I. diesel engine were studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to satisfy performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer, NOx and smoke were measured by gas analyzer and smoke meter. The results of steady flow test are as follows; as the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. Also we realized that there is a trade-off that the increase of swirl ratio decreases mean flow coefficient and increases the Gulf factor. And the optimum parameters to meet performance and emission through engine test are as follows; the swirl ratio 2.43, injection timing BTDC 13oCA and compression ratio 15.5.

나선형 흡기포트의 유동특성이 과급식 디젤엔진의 성능 및 배출가스에 미치는 영향 (Effects of the Flow Characteristics of Helical Intake Port on the Performance and Emission in a Turbocharged DI Diesel Engine.)

  • 윤준규;양진승;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.86-96
    • /
    • 2000
  • This study is to consider that the helical intake port flow and fuel injection system have effects on the characteristics of engine performance and emissions in a turbocharged DI diesel engine of the displacement 9.4L. The swirl ratio for ports was modified by hand-working and measured by impulse torque swirl meter, For the effects on performance and emission, the brake torque, BSFC were measured by engine dynamometer and NOx, smoke were by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased, And as the swirl is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by the following applied parameter; the swirl ratio is 2.43, injection timing is BTDC $13^{\circ}$CA and compression is 15.5.

  • PDF

가스연료엔진에서 설계변수에 따른 HC 배출 특성 (He Emissions from a Gaseous Fueled Engine with Various Design Parameters)

  • 김창업;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.183-188
    • /
    • 1999
  • For two engine design parameters; compression ratio and intake swirl ratio, measurement of concentrations of hydrocarbon species has been made as a function of various air-fuel ratio in order to investigate the ozone formation of HC emissions from LPG fuel. Higher compression ratio gave lower SR values due to larger aIkan species and higher BSR values because of larger NMHC generation. Swirl ratio did not affect HC emissions and ozone formation. For ${\lambda}=1.1{\sim}1.2$, higher SR values resulted from the species of aIken which has higher MIRs were highly produced. Leaner mixture showed lower SR values due to the increase of the aIkan which has a lower MIR.

  • PDF

스파크 점화 엔진에서 희박연소의 전자제어 히스테리시스 현상에 관한 실험적 연구 (A Experimental Study on the Electronic Control Hysteresis Phenomenon of Lean Burn in Spark Ignition Engine)

  • 김응채;김판호;서병준;김치원;이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.475-481
    • /
    • 2004
  • Recently it is strongly required on lower fuel consumption. lower exhaust emission, higher engine performance. and social demands in a spark ignition gasoline engine. In this study. the experimental engine used at test. it has been modified the lean burn gasoline engine. and used the programmable engine management system, and connected the controller circuit which is designed for the engine control. At the parametric study of the engine experiment, it has been controlled with fuel injection, ignition timing. swirl mode, equivalence ratio engine dynamometer load and speed as the important factors governing the engine performance adaptively. It has been found the combustion characteristics to overcome the hysteresis phenomena between normal and lean air-fuel mixing ranges. by mean of the look-up table set up the mapping values. at the optimum conditions during the engine operation. As the result, it is found that the strength of the swirl flow with the variation of engine speed and load is effective on combustion characteristics to reduce the bandwidth of the hysteresis regions. The results show that mass fraction burned and heat release rate pattern with crank angle are reduced much rather, and brake specific fuel consumption is also reduced simultaneously.

디젤엔진의 콩기름연료에 의한 운전성능에 관한 시험 (A Study on the Operation Performance of Diesel Engine by using of Soybean Oil Fuel)

  • 이기명
    • 한국농공학회지
    • /
    • 제18권4호
    • /
    • pp.4259-4264
    • /
    • 1976
  • This paper, is about the test on the operating performance of diesel engine by using of soybean oil which farmers could supply in their farm yard. The diesel engine used is a swirl-chamber type, four stroke cycle with single cylinder, air cooling and its rated horse power is 2 PS per 1300 rpm. Several results obtained are as follows; 1. The starting performance of diesel engine with soybean oil is almost the same as that with light oil. 2. The variation of engine speed according to various engine load is small when soybean oil is used compared with light oil. It is considered that soybean oil is desirable for the purpose of industerial power machine fuel. 3. The specific fuel consumption increases approximately 10 percent high in the condition of rated horse power and maximum horse power and shows less or same during the load test in low velocity, when soybean oil is used 4. Though the brake thermal efficiency in the condition of rated horse power and maximum horse power is inclined to decrease when soybean oil is used compared during the load test in low velocityt shows good inclination.

  • PDF

포트 마스킹에 따른 엔진 부분부하 성능 특성 (Part Load Performance Characteristics according to Port Masking)

  • 김형식;김인옥;박찬준;엄인용
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.42-49
    • /
    • 2011
  • To expand lean misfire limit and improve combustion stability, the effects of port masking were estimated to secure basic data for applying the mechanism to SI engine instead of asymmetrical port and port throttling devises. For this purpose, various shapes and ratios of masking plates were mounted between port and manifold. The masking effects were evaluated by mixture response test under various load and speed conditions. The results showed that lean misfire limits were expended and fast combustion was observed for all masking shapes and ratios, especially, the effect of diagonal 1/4 masking was remarkable. In conclusion, the port masking method could be easily applied to engine without redesign of port for improving part load performance.