• Title/Summary/Keyword: Swirl and Tumble Flow

Search Result 60, Processing Time 0.027 seconds

A Study on the Steady Flow Characteristics by PDA and Tumble Control Valve in Combustion Chamber (스월 및 연소실 형상에 의한 정상유동특성에 관한 연구)

  • Kim Dae-Yeol;Han Young-Chool;Park Bong-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.74-82
    • /
    • 2006
  • This paper describes the steady flow characteristics due to PDA and tumble control valve in combustion chamber. We also investigated the flow inclination angle defined as the inverse tangent of non-dimensional rig tumble(NRT) devided by non-dimensional rig swirl(NRS) to find dominant flow direction. So we adapted two different types of PDA valve(port deactivation valve) to strengthen a swirl flow. The in-cylinder swirl flow different tendency between with/without PDA valve. It might be thought to be affected by swirl flow. We could find that tumble ratio and swirl ratio is different by PDA valve. The comparison are taked account of the swirl, the tumble ratio comparison in same mass flow rate. As a result, PDA valve is better than tumble control valve both in steady flow condition and swirl, tumble ratio. The data from present study are available for design of engine as the basic data.

Effects of Tumble Adaptor Configurations on the Intake Tumble Characterization (텀블-스월 변환장치 형상이 흡입텀블 특성화에 미치는 영향)

  • Kang, K.Y.;Lee, J.W.;Baek, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.66-73
    • /
    • 1994
  • The configuration effects of a tumble adaptor which transforms tumble into swirl on the intake tumble characterization under steady flow condition have been investigated by LDV measurement The following parameters were involved to test their effects on tumble-swirl conversion characteristics ; the cylinder height and its bottom shape, measuring position in the swirl induction pipe, and the relative direction of the induction pipe. The short cylinder height and the flat bottom of the tumble adaptor were found effective for the generation of tumble in the cylinder, allowing higher tumble-swirl conversion efficiency.

  • PDF

Investigation of In-Cylinder Flow Patterns in 4 Valve S. I. Engine by Using Single-Frame Particle Tracking Velocimetry

  • Lee, Ki-hyung;Lee, Chang-sik;Chon, Mun-soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.108-116
    • /
    • 2001
  • The in-cylinder flow field of gasoline engine comprises unsteady compressible turbulent flows caused by the intake port, combustion chamber geometry. Thus, the quantitative analysis of the in-cylinder flow characteristics plays an important role in the improvement of engine performances and the reduction of exhaust emission. In order to obtain the quantitative analysis of the in-cylinder gas flows for a gasoline engine, the single-frame particle tracking velocimetry was developed, which is designed to measure 2-dimensional gas flow field. In this paper, influences of the swirl and tumble intensifying valves on the in-cylinder flow characteristics under the various intake flow conditions were investigated by using this PTV method. Based on the results of experiment, the generation process of swirl and tumble flow in a cylinder during intake stroke was clarified. Its effect on the tumble ratio at the end of compression stroke was also investigated.

  • PDF

Effects of Injection Timing and Intake Flow on In-Cylinder Fuel Behavior in a GDI Engine (직접분사식 가솔린 엔진에서 분사시기와 흡입유동이 실린더 내 연료의 거동에 미치는 영향)

  • 이정훈;강정중;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.7-13
    • /
    • 2003
  • The purpose of this study is to investigate the effect of the in-cylinder flows and different injection timings on fuel behavior in the cylinder of a GDI engine. Three different flows types induced by using masked port, unmasked port, and port deactivation were tumble, swirl&tumble, and high swirl respectively. LIEF technique was applied to investigate the mixture formation and fuel distribution at ignition time in the transparent engine with optical access through the piston top and upper part of cylinder liner. Injection timings of 180,90, and 60 degrees before TDC were examined. It was found that tumble flow was more effective on the homogeneous mixture formation than other flow and swirl flow transported more fuel vapor to the exhaust side at early injection mode, and swirl and swirl & tumble flow made fuel vapor concentrate around the cylinder center at late injection mode.

LARGE EDDY SIMULATIONS OF TUMBLE AND SWIRL FORMATIONS IN ENGINE IN-CYLINDER FLOW

  • Lee, B.S.;Lee, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.415-422
    • /
    • 2006
  • Swirl and tumble flows in an engine in-cylinder have been simulated by using a three-dimensional computational fluid dynamics code, and the results are validated in comparison with experimental data. The large eddy simulation based on the Smagorinsky model and the fractional step method is adopted to describe the turbulence of in-cylinder flows and to save computing time, respectively. The main purpose of this study is connected with the effect of various conditions of intake flows on formation and development of in-cylinder tumble and swirl motions. The engine speeds considered are 1000 rpm and 3000 rpm for intake flows with inclination angles between $-10^{\circ}$ and $20^{\circ}$ at deflection angles of $0^{\circ}$, $22.5^{\circ}$, and $30^{\circ}$. The results are discussed by visualizing flow fields and by evaluating parameters in relation to vortex intensity such as swirl and tumble ratios.

Steady Flow Characteristics of Flow-Intensifying Valve Configurations (유동 강화형 밸브의 형상에 따른 정상 유동 특성)

  • Choi, Su-Jin;Ryoo, Ki-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.166-174
    • /
    • 1999
  • The flow characteristics of 2-valve and 4-valve cylinder heads with various blocked-valve were experimentally investigated in a steady flow rig. Effects of the blocked-valve configurations on flow coefficient, swirl and tumble intensity are studied. Compared to the conventional valve, the blocked valve in both cylinder heads have the much lower flow coefficient and the much higher intensity of swirl and tumble. Under the same size of blockage, the value of flow coefficient and swirl(or tumble) intensity were varied according to the position of blockage. Throughout these steady flow test the optimized positions of blockage in both cylinder heads were determined.

Turbulence Enhancement Characteristics Analysis of Inclined-Tumbles for Various SCV Configurations (SCV형상별 경사텀블유동의 난류증가 특성 해석)

  • Lee, J.W.;Kang, K.Y.;Choi, S.H.;Park, S.C
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.234-242
    • /
    • 1998
  • It has been demonstrated that the in-cylinder turbulence is enhanced by inclined swirl with a SCV(swirl control valve). The inclined-tumble flow measurement and analysis were performed for various types of intake systems that generated several different combinations of swirl ratio and tumble ratio in the cylinder. Experiments were conducted in a 4-valve optically accessed transparent research engine using a backward-scatter LDV mode under motoring condition at 1,000rpm. The influence of swirl/tumble levels on the characteristics of turbulence was analysed. This study presents experimental results of the inclined-tumble flow structure, including the flow motion phenomena, angular momentum and turbulence intensity.

  • PDF

In -Cylinder Flow Characteristics Varying Intake Valve Lift (밸브 리프트 변화에 따른 실린더 내 흡입 공기의 유동 특성)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.82-88
    • /
    • 1999
  • The object of this study is to find new evaluation index for in-cylinder flow chracteristics istead of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angularflow characteristics instead of swirl and tumble coefficient.

  • PDF

The Effects of Tumble and Swirl Flow on the Behavior of Liquid/Vapor Phases in a DI Gasoline Engine (직분식 엔진에서 실린더 내 연료의 액.기상 거동에 미치는 텀블과 스월의 영향)

  • 강정중;최동석;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.23-30
    • /
    • 2002
  • This present study experimentally investigates the behavior of liquid and vapor phase of fuel mixtures with changing the in-cylinder air motion in an optically accessible engine. The conventional MPI/DOHC engine was modified to gasoline direct injection engine with swirl motion. The images of liquid and vapor phases were captured in the motoring operation condition using exciplex fluorescence method. Two dimensional spray fluorescence images of liquid and vapor phases were acquired to analyze spray behaviors and fuel distribution inside of cylinder respectively, In early injection timings $(BTDC\;270^{\circ},\;180^{\circ})$, tumble flow transported most of vapor phase to the lower region and the both sides of cylinder, so vapor phase didn't become uniform distribution up to the half of the compression stroke. In the case of swirl flow, the fuel mixture was confined near the swirl origin in upper region of cylinder. In late injection timings $(BTDC\;90^{\circ})$, tumble flow transported vapor phase to the intake valve and swirl flow to the exhaust valve.

A Study on the Tumble Flow Test Rig Used to Developing Engine Induction System (엔진 흡기시스템 개발 시 사용하는 텀블유동 시험장치의 고찰)

  • Yun, Jeong-Eui;Kim, Myung-Hwan;Nam, Hyeon-Sik;Min, Sun-Ki;Sim, Dae-Gon;Park, Pyeong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.184-189
    • /
    • 2006
  • Tumble flow test rig has been used as the useful tool in the developing intake system because major flow pattern induced by intake port of DOHC engine is tumble. Angular momentum of in-cylinder tumble flow can not be directly measured by impulse torque meter in the test rig like that of in-cylinder swirl flow due to rotational axis of the flow. Therefore the adaptor to transform tumble to swirl flow must be adapted in the test rig. In this study, using the commercial CFD code STAR-CD, we studied the effects on measured results due to the variation of the major design variables in the adaptor, tube length(L), tube diameter(D) and cylinder height(H). The effect of the attached angle($\theta$) of the test head to the adaptor also was simulated.