• Title/Summary/Keyword: Swirl

Search Result 1,157, Processing Time 0.023 seconds

An Experimental Investigation of Swirl Angle in a Horizontal Round Tube by Flow Visualization Method

  • Tae-Hyun Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.879-888
    • /
    • 2003
  • Swirling air flow in a horizontal round tube was experimentally studied for its visualization. The present investigation deals with swirl angle, flow visualization studies and accompanying vortex core behavior by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The swirl angle and the vortex core depended on the swirl intensity along the test tube. The results of swirl angles measured by flow visualization and hot wire reasonably agree with those of previous studies.

An Experimental Study on Flow Angle with Swirl in a Horizontal Circular Tube (수평 원통 관에서 선회를 동반한 유동각에 대한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.82-87
    • /
    • 2003
  • Flow angle with Swirl in a horizontal circular tube and a cylindrical annuli were experimentally studied for its visualization. This present investigation deals with flow angle, flow visualization studies and vortex core by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71 in a horizontal circular tube. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The flow angle and the vortex core depended on the swirl intensity along the test tube. The results of flow angles with swirl measured by flow visualization and hot wire reasonably agree with those of Sparrow One of the primary objectives of this research was to measure the flow angle with swirl in a cylindrical annuli along the test tube for different Reynolds numbers. The Reynolds number for these measurements ranged from 60,000 to 100,000 with L/D = a to 4.

  • PDF

Study of Supersonic, Dual, Coaxial, Swirl Jet (초음속 동축 스월제트의 유동특성에 대한 연구)

  • 김중배;이준희;이권희;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.15-18
    • /
    • 2003
  • The present study addresses an experimental investigations of the near field flow structures of supersonic, dual, coaxial, swirl jet. The swirl stream is discharged from the secondary annular nozzle and the primary inner nozzle provides the sonic and supersonic free jets. The interactions between the secondary swirl and inner soni $c^ersonic jets are quantified by a fine pilot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the secondary swirl and primary soni $c^ersonic jets are varied below 7.0. Experiments are conducted to investigate the effects of the secondary swirl stream on the primary sonic and supersonic jets, compared with the secondary stream of no swirl. The results show that the presence of annular swirl stream causes the Mach disk to move more downstream, with the increased diameter, and remarkably reduces the fluctuations of the impact pressures in the supersonic dual coaxial jet, compared with the case of the secondary annular stream of no swirl.swirl.

  • PDF

An experimental study on the characteristics of the swirl ratio distribution with an intake port geometry (흡기포트 형상에 따른 선회비 분포특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Ju, Bong-Cheol;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.725-734
    • /
    • 1997
  • The effect of helical intake port geometry on in-cylinder swirl flow characteristics was studied. Two helical intake ports were selected to change swirl ratio, mean flow coefficient with the variation of valve lifts, valve eccentricity ratios and axial distance. The measurements were made by using an impulse swirl meter. The port B modified to increase the swirl ratio( $R_{s}$) had the tendency of the increased non-dimensional rig swirl ( $N_{r}$) distribution in comparison with that of the port A. And the $N_{r}$ distribution was remarkably improved at low valve lifts. The modification of the geometry to increase the swirl ratio ( $R_{s}$) in helical intake port resulted in the decrease of the mean flow coefficient ( $C_{f(mean)}$) regardless of valve eccentricity ratio ( $N_{y}$). And also non-dimensional rig swirl ( $N_{r}$) in the high valve lift affected the calculation of swirl ratio considerably.onsiderably.

Effects of Swirl Ratio on Combustion Characteristics in DI Diesel Engine (스월비 변화가 직접분사식 디젤기관의 연소특성에 미치는 영향)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.149-153
    • /
    • 2003
  • Besides the fuel spray behavior and combustion chamber shape. an air motion has a key role on exhaust gas emission and performance in a DI diesel engine. A swirl ratio represents the ratio of the intake swirl velocity to the engine speed. The main purpose in this work is to investigate the effects of the swirl ratio to the combustion characteristics. A shroud valve machined to change the swirl ratio. Test was carry out by changing the engine speed, nozzle diameter and swirl ratio in a single cylinder diesel engine. From this study, the optimized combustion was found at swirl ratio 2.7. And it was also found that the increasing the maximum cylinder pressure with an increasing swirl ratio lead to decrease a smoke and to increase NOx.

  • PDF

The Effect of Swirl Number on the Flow Characteristics of Flat Flame Burner (선회도에 따른 평면 화염 버너의 유동특성)

  • Jang, Yeong-Jun;Jeong, Yong-Gi;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.997-1004
    • /
    • 2001
  • Burner of Flat Flame type expects the uniform flame distribution and NOx reduction. The characteristics of Flat Flame Burner become different according to swirl number in the burner throat. Experiments were focused on swirl effect by four types of swirler with different swirl numbers (0, 0.26, 0.6 and 1.24). It shows many different flow patterns according to swirl number using PIV(Particle Image Velocimetry) method. The flow of burner with swirler is recirculated by pressure difference between its center and outside. Recirculated air makes stable in flame, and reduced pollutant gas. In case of swirl number 0, main flow passes through axial direction. As swirl number increased, The backward flow develops in the center part of burner and Flow gas recirculates. This is caused by radial flow momentum becomes larger than axial flow by swirled air and the pressure at center drops against surrounding. As swirl number increases, the radial and axial velocity was confirmed to be larger than low swirl numbers. And turbulence intensity have similar pattern. The CTRZ(Central Toroidal Recirculation Zone) is shown evidently when y/D=1 and S=1.24. The boundary-layer between main flow and recirculated flow is shown that the width is seen to be decreased as swirl number increased.

An Experimental Study on the Measurement of Flow Field in a Direct Diesel Engine Using a Single Cylinder Visualization Engine (가시화 엔진을 이용한 직분식 디젤엔진내의 유동장 측정에 관한 연구)

  • Han, Yong-Taek;Hwang, Kyu-Min;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.129-137
    • /
    • 2006
  • This paper studies the effects of the swirl for the variation of intake port configuration that is key parameters in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on air-fuel mixing, combustion, and emissions. To investigate the effects of the swirl flow, various rpm(250, 500, 750) and two different intake port were used. And to evaluate the swirl motion in the flow field visualization engine, steady state flow test was conducted. Helical port intake port and SCV(Swirl Control Valve) were selected as the design parameters to increase the swirl flow and parametric study was performed. In the case of non-SCV, intake flow rate and non-dimensional swirl ratio were higher than those of SCV for the swirl head type. So, we could strengthen the swirl in the flow field with the swirl head type and don't using SCV. From the results of steady state flow test, non-swirl head type has the most good advantage for intake flow rate, and also the flow rate could be increased by using the SCV slightly. The effects of the type of engine head on intake air flow capability are dominant with respect to the existence of the SCV. We could measure the qualitative grade of swirl by capturing the scattering signal of microballoon from ICCD camera in the visualization diesel engine.

Comparison of Swirl Ratio Measured by Impulse Swirl Meter and Particle Image Velocimetry in a Steady Flow Bench of SI Engine (SI 엔진의 정상유동장치에서 충격식 스월미터와 입자영상유속계의 스월비 측정에 대한 비교 연구)

  • Lee, Sukjong;Ohm, In Yong;Sung, Jaeyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.437-442
    • /
    • 2015
  • The swirl ratio in a SI engine is investigated in a steady flow bench according to the measurement methods: an impulse swirl meter and particle image velocimetry (PIV). When measuring the swirl ratio using the PIV, the torque is evaluated based on the cylinder center and swirl center, respectively. The position of the measurement plane is considered. As a result, in the upstream, the swirl ratio measured by the impulse swirl meter is estimated to be larger than that from the PIV measurements due to the unstable vortex motions. Regarding the PIV measurements, the swirl ratio based on the cylinder center has been found to be lower than that based on the swirl center. On the other hand, the difference in swirl ratio has decreased smaller as the measurement plane moved downstream due to the stabilization of the vortex motion.

Velocity and temperature profiles of Al/water micro fluid in a circular tube with swirl

  • Chang, Tae-Hyun;Lee, Kwon Soo;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.677-684
    • /
    • 2013
  • A lot study of convection heat transfer on internal flow has been extensively conducted in the past decades using of high specific surface area, increasing heat transfer coefficient, swirling flow and improving the transport properties. This study concerned with the application of a tangential slot swirl generator for improving heat transfer in a horizontal circular copper tube. The Al particles(about $100{\sim}130{\mu}m$) was employed for this experimental work. 3D PIV(particle image velocimetry) technique has employed to measure velocity profiles of Al particles with and without swirl flow. The copper tube is heated uniformly by winding of a heating coil for heat transfer work, having a resistance of 9 ohm per meter. Experiments are performed in the Reynolds number range of 6,800~12,100 with swirl and without swirl using Al particles. Experimental data for comparison of Nusselt number is presented that of with swirl and without swirl along the test tube for the Reynolds numbers. The Nusselt number is improved with increasing of Reynolds numbers or swirl intensities along the test tube. The Nusselt number with swirl flow is about 60.0% to 119.0% higher than that obtained by the Dittus-Boelter equation.

A study on the stability of turbulent diffusion flame in double swirl flows (이중선회류중의 난류확산화염의 안정화에 관한 연구)

  • 조용대;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1669-1678
    • /
    • 1990
  • The annular and coaxial swirl flows between which LPG is supplied was selected to study the swirling flames in double co-swirl flows. The objective of this study is to research into the effects of double co-swirl flow conditions on the stability limit, the reverse flow boundary, and the time mean temperature distributions of the swirling flames. The increase of swirl intensity of axial flow makes the stability limit decrease, but the annular swirl flow (SM>0.5) makes stability and swirl intensity of axial flow increase, And the existence of axial swirl flow makes flame intensive and small in size, and this may be applicable to the design of high power compact combustor.