• 제목/요약/키워드: Swirl

검색결과 1,158건 처리시간 0.027초

Experimental Study of Thermo-Flow Field in a Model Gas Turbine Combustor with Various Swirl Conditions (스월변화에 따른 모형 가스터빈 연소기의 열유동장의 실험적 연구)

  • Ryu, Song-Youl;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제30권4호
    • /
    • pp.70-76
    • /
    • 2002
  • Characteristics of kerosine spray combustion were investigated at various swirl condition. PDPA(Phase Doppler Particle Analysis) was used to measure the droplet sizes and velocities. R-type(Platinum vs. Platinum-13%rhodium) thermocouple was used to measure the temperature of combustion flow field inside model combustor. A visualization of spray and flame was performed with still camera. As swirl number increases due to increase of swirl vane angle, the spray and the flame were developed to radial direction rapidly. When swirl number is small, the configuration of flame is cone type, but swirl number is large, the configuration of flame is cylindrical type due to enhanced mixing by the transport of swirl momentum.

The Effect of Intake Swirl Ratios on Combustion Performance in a Heavy-Duty LPG Engine (대형 LPG 엔진의 흡입 스월비에 따른 연소성능에 관한 연구)

  • 한병주;김창업;강건용;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제9권5호
    • /
    • pp.46-53
    • /
    • 2001
  • To optimize the intake flow condition in the heavy-duty LPG SI engine, five different swirl ratios of intake port were investigated experimentally by oil spot method, LDV and single cylinder engine test. The flow characteristics near the piston surface were observed by oil spot method and magnitudes of swirl flow were measured quantatively by LDV method in the steady flow rig. The engine performances of various swirl flow were also tested with the heavy-duty LPG SI single cylinder engine. In the results, high swirl ratio, above $R_s$=2.3, was not suitable to develope a stable flame kernel and to produce high engine performance. Especially it was more serious under lean burn conditions, since turbulence intensity was smaller than bulk flow though those are increased together. These results were also confirmed by LDV measurement and oil spot method. On the contrary, low swirl ratio($R_s$=1.3) is not good to propagate a flame since the turbulence intensity and bulk flow are vanished during compression stroke and low swirl ratio has too weak initial energy for stable combustion. Therefore, the of optimized swirl ratio f3r the heavy-duty LPG engine in this work was found around $R_s$=2.0.

  • PDF

A Study on the Wide Reach Nozzle of Sprayer (V) -The Long Range Nozzle- (휴반용 분무기의 Nozzle에 관한 연구(V) -원거리용 Nozzle-)

  • 옹장우;이상우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제17권4호
    • /
    • pp.3991-4000
    • /
    • 1975
  • It is the aim of this study to investigate the influence of the factors in the sprayer nozzle for the travelling distance and to get nozzle design data in relation to the nozz1e with and without swirl plate. The factors of sprayer nozzle are composed of the spraying pressure, the helical angle of swirl plate, the helical groove depth of swirl plate, the distance of vortex chamber the slope of nozz1e cap, the curvature of nozzle cap and the hole diameter of nozz1e cap. The travelling distance and the size of sprayed particle are experimeted indoors by the factorial arrange-ment according to the 5 each level of the above factors. The results of this stupy are summarized as follows; 1. In the nozzle with swirl p1ate there were remarkable significance among factors each other, while without swirl plate were no significance. 2. The helical angle and groove depth in the nozzle with swirl plate were the highest effective factors. The effect of helical angle was very remarked in the quadratic curve with minium value. 3. The correlation betweenthe travelling distance and the sprayed particle size was no high and under 250 micron in the case with swirl plate, and there was higher correlation in the case without swirl plate. 4. The new ideal development of the swirl plate using of the most effective helical angle and groove depth will probably show the possiblities to make effective travelling distance over 8 meters and more over and to make average particle diameter under 300 micron.

  • PDF

Study of Supersonic, Dual, Coaxial, Swirl Jet (초음속 이중동축 스월제트 유동특성에 관한 연구)

  • Kim, Jung-Bae;Kim, Heuy-Dong;Lee, Kwon-Hee;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1771-1776
    • /
    • 2003
  • The supersonic swirl jet is being extensively used in many diverse fields of industrial processes since those lead to more improved performance, compared with the conventional supersonic no swirl jet. In the present study, an experiment is carried out to investigate the effect of annular swirl jet on the supersonic dual coaxial jet. A convergent-divergent nozzle with a design Mach number of 1.5 is used for the supersonic primary jet, and the sonic nozzles with four tangential inlets are used to make the secondary swirl jet. The primary jet pressure ratio is varied in the range from 3.0 to 7.0 and the outer annular jet pressure ratio is from 1.0 to 4.0. The interactions between the annular swirl and the inner supersonic jet are quantified by the pitot impact and static pressure measurements and visualized by using the Schlieren optical method. The results show that annular swirl jet alters the shock structure and impact pressure distributions compared with no swirl jet.

  • PDF

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Hae-Joo;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

Large Eddy Simulation on Swirl Direction Effect of a Combustor with Seven Swirl Injectors (7개 스월 인젝터 연소기의 스월 방향에 따른 유동 특성 LES)

  • Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye;Yang, Vigor
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.14-17
    • /
    • 2010
  • To identify the turbulent flow characteristics resulted from the swirl direction of a combustor with seven swirl injectors, a 3D Large Eddy Simulation(LES) was implemented. The combustor of concern is the LRE combustor, designed by Aerospace Combustion Laboratory of Georgia Institute of Technology. The seven-clockwise-swirl-injectors combustor produces stronger flow interference among injectors, specially obvious tangential velocity near the wall, than the combustor with four-clockwise and three-counterclockwise swirl injectors. In addition, pressure fluctuations in the combustor with seven-clockwise-swirl-injectors was more amplified.

  • PDF

Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System (선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성)

  • Cha, Chun Loon;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • 제19권3호
    • /
    • pp.34-43
    • /
    • 2014
  • The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.

The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Gun-Type Gas Burner with a Cone-Type Baffle Plate (콘형 배플판을 갖는 Gun식 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제27권4호
    • /
    • pp.466-475
    • /
    • 2003
  • The gun-type gas burner adopted in this study is generally composed of eight slits and swirl vanes. Thus, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 $\ell$/min in the test section of subsonic wind tunnel. The axial mean velocity component in the case of burner model with only swirl vanes shows the characteristic that spreads more remarkably toward the radial direction than axial one, it does, however, directly opposite tendency in the case of burner model with only slits. Consequently. both slits and swirl vanes composing of gun-type gas burner play an important role in decrease of the speed near slits and increase of the flow speed in the central part of a burner because the biggest speed spurted from slits encircles rotational flow by swirl vanes and it drives main flow toward the axial direction. Moreover, the turbulent intensities and turbulent kinetic energy of gun-type gas burner are distributed with a fairly bigger size within X/R<0.6410 than burner models which have only slits or swirl vanes because the rotational flow by swirl vanes and the fast jet flow by slits increase flow mixing, diffusion, and mean velocity gradient effectively.

The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Cone Type Gas Burner (콘형 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.341-346
    • /
    • 2001
  • The gun-type gas burner adopted in this study is generally composed of some slits and swirl vanes. Therefore, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate $450\;{\ell}/min$, which is equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of subsonic wind tunnel. When the burner has only swirl vanes, the axial mean velocity component shows the characteristic that spreads more remarkably toward radial direction than axial one, but when it has only slits, that is developed spreading more toward axial direction than radial one. Therefore, because the biggest speed is spurted in slits and it derive main flow toward axial direction encircling rotational flow that comes out from swirl vane that is situated on the inside of slits, both slits and swirl vanes composing of cone type gas burner act role that decreases the speed near slits and increases the flow speed in the central part of a burner. Moreover, because rotational flow by swirl vanes and fast jet flow by slits increase turbulent intensities effectively coexisting, the turbulent kinetic energy is distributed with a bigger size fairly near slits than burner models which have only slit or swirl vanes within X/R<0.6410.

  • PDF

Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor (저선회 모델 연소기의 연소특성 및 선회각도 영향)

  • Jeong, Hwanghui;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제20권4호
    • /
    • pp.40-49
    • /
    • 2016
  • This study aims to confirm the characteristics of low swirl combustion at our low swirl model combustor. To do it, it is experimentally conducted by evaluating the flame shape, stability region and emissions according to the swirl angle. The most significant feature of low swirl combustion is a occurrence of lifted flame. Such lifted flames happen to combine exquisitely propagating feature of premixed flame with diverging flow. This feature of lifted flame was confirmed through a velocity flow field and visualized the flame in this model combustor. The visualized flame was classified according to the thermal power and equivalence ratio. The variation study in swirl angles showed that the lean flammable limit could be extended only by swirl angles. Also, as the swirl angle increased, it was confirmed that the NOx and CO emissions were decreased due to the mixing enhancement and shorter resident time.