• Title/Summary/Keyword: Swing Phase

Search Result 254, Processing Time 0.025 seconds

A CMOS LC VCO with Differential Second Harmonic Output (차동 이차 고조파 출력을 갖는 CMOS LC 전압조정발진기)

  • Kim, Hyun;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.60-68
    • /
    • 2007
  • A technique is presented to extract differential second harmonic output from common source nodes of a cross-coupled P-& N-FET oscillator. Provided the impedances at the common source nodes are optimized and the fundamental swing at the VCO core stays in a proper mode, it is found that the amplitude and phase errors can be kept within $0{\sim}1.6dB$ and $+2.2^{\circ}{\sim}-5.6^{\circ}$, respectively, over all process/temperature/voltage corners. Moreover, an impedance-tuning circuit is proposed to compensate any unexpectedly high errors on the differential signal output. A Prototype 5-GHz VCO with a 2.5-Hz LC resonator is implemented in $0.18-{\mu}m$ CMOS. The error signal between the differential outputs has been measured to be as low as -70 dBm with the aid of the tuning circuit. It implies the push-push outputs are satisfactorily differential with the amplitude and phase errors well less than 0.34 dB and $1^{\circ}$, respectively.

Kinematical Analysis of Tippelt Motion in Parallel Bars (평행봉 Tippelt 동작의 기술 분석)

  • Back, Hun-Sik;Kim, Min-Soo;Moon, Byoung-Yong;Back, Jin-Ho;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 2007
  • The purpose of this study was to offer suitable model for performing Tippelt motion and data for training Tippelt motion through the quantitative kinematical analysis of Tippelt motion in parallel bars. The results of analysing kinematic variations through three-dimensional reflection analysis of three members of the national team as the objects of the study were shown as follows. 1. It seemed that the shoulder-joints which are stretched as much as possible affects the whole Tippelt motion while one is swinging downward. The time of process of the center of mass for the body reaching to the maximum flection point should be quick and body's moving from the vertical phase to the front direction should be controled as much as possible. 2. While one is swinging upward, the stability of flying motion could be made certain by the control of body's rapid moving to the front direction and stretching shoulder-joints and hip-joint to reverse direction. 3. While one is flying upward, the body should be erected quickly and lessening the angle of the hip-joint affects the elevation of flight. When the powerful counter turn motion is performed, the stable motion could be made. As a result of this study, It seems that sudden fall and the maximum stretch of shoulder-joints is important during performing Tippelt motion in parallel bars. Also, it concludes that the maximum bending of hip-joints at the starting point of upward swing, sudden stretch to the reverse direction of shoulder-joints and hip-joints when one is leaving bars, control of body's moving to the front direction, and lessening the angle of hip-joints at the flying phase is important.

The Biomechanical Analysis of Two and Half Rotation Technic of Penche in Rhythmic Gymnastics (리듬체조 퐁쉐 2회전 1/2턴 기술의 역학적 분석)

  • Seo, Se-Mi;Ryu, Ji-Seon;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.269-279
    • /
    • 2011
  • This study was analyzed the characteristics on the stability of posture while conducting a through two and half rotation technic of pench$\acute{e}$ in rhythmic gymnastics. Two rhythmical gymnastics player(LKH and SSJ) who is a member of the national team were selected, and for obtain the kinematic and kinetic variables were used a ProReflex MCU 240 infrared camera(Qualisys, Sweden) and a Type9286A force platform(Kistler, Switzerland). The mechanical factors were computed by using Visual3D program and Matlab R2009a. During the landing and rotation phase the results showed following characteristics; 1) In medial-lateral and horizontal displacement of the support foot, LKH showed smaller movement than SSJ, but SSJ showed smaller movement than LKH in swing foot. LKH showed bigger movement in medial-lateral axis of COP and vertical axis of COG, but SSJ showed bigger movement in horizontal axis of COP and medial-lateral axis of COG. 2) SSJ showed bigger maximum horizontal and vertical velocity at P1 and P2 than LKH. 3) In the inclination angle of COP and COG, SSJ showed smaller change than LKH, but within medial-lateral tilt of the shoulder, LKH performed rotation motion in horizontal position than SSJ. There was no differences in each force components during rotation, but on landing phase, the results showed a characteristic that SSJ exerted bigger breaking force and vertical force than LKH.

A 1.88-mW/Gb/s 5-Gb/s Transmitter with Digital Impedance Calibration and Equalizer (디지털 임피던스 보정과 이퀄라이저를 가진 1.88mW/Gb/s 5Gb/s 송신단)

  • Kim, Ho-Seong;Beak, Seung-Wuk;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • This paper describes 1.2-V 5-Gb/s scalable low voltage signaling(SLVS) differential transmitter(TX) with a digital impedance calibration and equalizer. The proposed transmitter consists of a phase-locked loop(PLL) with 4-phase output clock, a 4-to-1 serializer, a regulator, an output driver, and an equalizer driver for improvement of the signal integrity. A pseudo random bit sequence generator is implemented for a built-in self-test. The proposed SLVS transmitter provides the output differential swing level from 80mV to 500mV. The proposed SLVS transmitter is implemented by using a 65-nm CMOS with a 1.2-V supply. The measured peak-to-peak time jitter of the implemented SLVS TX is about 46.67 ps at the data rate of 5Gb/s. Its power consumption is 1.88 mW/Gb/s.

Development of 4-Bar Linkage Orthotic Knee Joint (4절 연쇄 보조기무릎관절의 개발)

  • Kim, Jang-Hwan;Yi, Jin-Bock
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.317-325
    • /
    • 2011
  • This study aims to develop the stance-control typed 4-bar linkage orthotic knee joint that replace the locked orthotic knee joint for the disabled with poliomyelitis and muscle weakness of lower limb. Unlike the existing stance-control orthotic knee joint, there are no needs of electric power, connecting circuit, bulky compomnets, etc, because this 4-bar linkage orthotic knee joint is controled by geometric locking. To evaluate the 4-bar linkage orthotic knee joint, a subject participated in this study who has been diagnosed with lower limb poliomyelitis and have used locked type orthotic knee joint. In the results of analysis of subject's gait using 3-dimentional motion analysis system, this 4-bar linkage orthotic knee joint provide the stability during stance phase and knee flexion during swing phase.

The Effects of the Task-Oriented Trunk Training on Muscle Strength and Muscle Activity of Trunk, Balance and Gait in Stroke Patients (뇌졸중 환자의 과제지향몸통훈련이 몸통 근력과 근활성도, 균형 및 보행에 미치는 효과)

  • Oh, Gkubin;Lee, Hyojung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.1
    • /
    • pp.203-217
    • /
    • 2020
  • Purpose : This study aimed to determine whether task-oriented trunk training can improve muscle strength, muscle activity, balance, and gait in stroke patients. Methods : A total of 27 stroke patients who agreed to participate in the study were randomly divided into the following two groups: (1) experimental group 1, task-oriented training applied to the proximal part (n=14) and (2) experimental group 2, task-oriented training applied to the distal part (n=13). Thereafter, task-oriented trunk training was accordingly applied in each group for 60 minutes per session, 5 times per week for 6 weeks. Muscle power, muscle activity, balance, and gait were assessed using a digital dynamometer, surface electromyograph, Timed Up and Go (TUG) test, and gait analyzer (G-WALK), respectively, before and after training. Results : Trunk muscle strength significantly increased in both groups after training (p<.05). and there was a significant difference between the groups. Muscle activity in the stance phase during gait significantly increased in both groups after training (p<.05), and there was a significant difference between the groups. Muscle activity in the swing phase during gait significantly increased in both groups after training (p<.05), and there was a significant difference between the groups. The TUG test values significantly increased in both groups after training (p<.05), and there was a significant difference between the groups. Gait significantly increased in both groups after training (p<.05), and there was a significant difference between the groups. Conclusion : The results of this study show that task-oriented training can improve trunk muscle strength, muscle activity, balance, and gait in stroke patients.

Lower Extremity Muscle Activity on the Obstacle Gait in Older Parkinson Diseases (파킨슨 환자들의 장애물 보행 향상을 위한 하지의 근육 활동 규명)

  • Lim, Bee-Oh;Kim, Mi-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2007
  • Falls associated with tripping over an obstacle can be dangerous, yet little is known about the strategies used for stepping over obstacles in older Parkinson disease. The purpose of this study was to investigate the lower extremity muscle activity on the obstacle gait according to obstacle height in older Parkinson diseases. The obstacle gait of 7 older Parkinson disease was examined during a 5.0 m approach to, and while stepping over, obstacles of 0, 25, 52, and 152mm. Seven pairs of surface electrodes(Noraxon MyoResearch, USA) were attached to the right-hand side of the body to monitor the adductor longus(AL), gluteus medius(GME), gluteus maximus(GMA), biceps femoris(BF), rectus femoris(RF), gastrocnemius(GA), tibialis anterior(TA). Electromyography data were filtered using a 10Hz to 350 Hz Butterworth band-pass digital filter and normalized to the maximum value in the analyzed phases. A one-way ANOVA for repeated measures was employed for selected electromyography variables to analyze the differences of the height of four obstacles. The results showed significant differences between 0.0mm and 25, 52, and 152mm obstacle height in TA and GA activities during the second phase(swing phase). But the more increase obstacle height, the more not increase the muscle activities. This means that the Parkinson disease stepping over obstacle inefficiency. To prevent and reduce the frequency of falls, elderly Parkinson disease maintained and improved their balance, muscular strength, neuromuscular control and mobility.

Biomechanical Analysis of Throwing Movement between Skilled and Unskilled High School Students (남자 고등학생 숙련자.비숙련자의 던지기 동작에 대한 운동역학적 비교 분석)

  • Kough, Hyung-Jeek;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2009
  • This study was conducted to compare biomechanical differences in throwing movement between skilled and unskilled high school students using three-dimensional analysis system with a force platform. The findings indicated that skilled students showed shorter throwing time, faster horizontal speed of (1) the center of mass at heel contact of left foot, (2) the forearm throughout swing phase, (3) the hand after heel contact while unskilled students showed faster horizontal speed of, (1) the center of mass after heel contact and (2) the hand at heel contact of left foot. Skilled students showed greater (1) shoulder angle during throwing, (2) elbow angle after take off of foot, (3) peak vertical ground reaction force during throwing and (4) peak anterior-posterior ground reaction force at heel contact of right foot. While skilled students showed leaning backward of the trunk during throwing, unskilled students showed leaning forward during release phase with leaning backward before release.

Linear Analysis of Water Surface Waves Generated by Submerged Wave Board Whose Upper and Lower Ends Oscillate Horizontally Freely (상하단이 자유롭게 수평동요하는 수중 조파판에 의해 생성된 수면파의 근사해석)

  • Kim, Hyochul;Oh, Jungkeun;Kwon, Jongoh;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.418-426
    • /
    • 2019
  • To derive a simplified analytic solution which can be utilized as a fundamental solution for the wave maker design, a segment of the wave board has been idealized as a submerged line segment in a two dimensional domain of a wave flume. The lower end of the line segment could be located at arbitrary depth of the wave flume and the upper end of the board could be also submerged to any depth from the free surface. The freely oscillating motion of the wave board is assumed to be defined by determining the condition of horizontal oscillation on both ends differently. The submerged wave board oscillating in horizontal direction could be specified by selecting the amplitude, frequency and the phase lag differently on lower and upper ends of the board. The simplified two dimensional wave generated by the wave board segment has been obtained by the first order perturbation method. It is found that the general solution of the freely oscillating wave board in two dimensional domain could be decomposed into the solution of flap motion with lower end hinge and swing motion with upper end hinge. The case study of the analytic solutions has been carried out to evaluate the effect on the wave height due to the difference of oscillation frequency, phase difference and variation of stroke between for the motion of both ends. It is found that the solution of the freely oscillating wave board could be utilized for the development of high performance wavemaker especially for irregular waves.

A 1.8V 2-Gb/s SLVS Transmitter with 4-lane (4-lane을 가지는 1.8V 2-Gb/s SLVS 송신단)

  • Baek, Seung-Wuk;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.357-360
    • /
    • 2013
  • A 1.8V 2-Gb/s scalable low voltage signaling (SLVS) transmitter (TX) is designed for mobile applications requiring high speed and low power consumption. It consists of 4-lane TX for data transmission, 1-lane TX for a source synchronous clocking, and a 8-phase clock generator. The proposed SLVS TX has the scaling voltage swing from 50 mV to 650 mV and supports a high speed (HS) mode and a low power (LP) mode. An output impedance calibration scheme for the SVLS TX is proposed to improve the signal integrity. The proposed SLVS TX is implemented by using a $0.18-{\mu}m$ 1-poly 6-metal CMOS with a 1.8V supply. The simulated data jitter of the implemented SLVS TX is about 8.04 ps at the data rate of 2-Gbps. The area and power consumption of the 1-lane of the proposed SLVS TX are $422{\times}474{\mu}m^2$ and 5.35 mW/Gb/s, respectively.

  • PDF