• Title/Summary/Keyword: Swing Arm Actuator

Search Result 17, Processing Time 0.021 seconds

Track-following Control of an Optical Pick-up Actuator Using PZT (PZT를 이용한 광 정보저장기기용 액추에이터의 트랙 추적제어)

  • 정동하;박태욱;박노철;양현석;이우철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.385-393
    • /
    • 2004
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(voice coil motor) for coarse motion, for an SFF ODD(small form factor optical disk drive), in order to achieve fast access speed and precise track-following control. Over the past few decades there have been a lot of researches related to the VCM and dual-stage actuator. In this paper, we focus our attention on the design and control of the PZT actuator. Due to the dual cantilever structure. the PZT actuator can generate precise translational tracking motion at its tip to which an optical pickup is attached. and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing it with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

Design and Analysis of Swingarm Type Rotary Actuator for Micro ODD (초소형 광디스크 드라이브용 스윙암 방식 로터리 엑츄에이터 설계 및 분석)

  • 김동욱;홍어진;박노철;박영필;김수경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.780-785
    • /
    • 2003
  • Recently the trends in information storage devices need small size, mobility, high capacity, and low power consumption etc. To satisfy those, the development of high performance actuator is an important issue. Compared with general linear actuator for optical disk drive, swingarm type rotary actuator is suitable to design in small form factor and has fast access time for random access. Swingarm actuator is designed considering the structural problem and the actuating force of VCM(Voice Coil Motor). The increase of mass caused by optical components makes vibration problems of swing-arm, therefore resonance frequency should be increased and inertia has to be reduced. ANSYS FEM tool is employed in optimizing swingarm. The VCM is designed using 3-D electro-magnetic analysis, and parameters of magnetic circuit are determined to matte large flux density. The large flux density enables to achieve low power consumption. VCM holder is designed to get the mass balance of total actuator and this balance reduces the magnitude of critical mode relative to pivot bearing, It is expected that swingarm type rotary actuator designed by this method is available to variable type of micro optical disk drives.

  • PDF

1-Axis Actuator for Compensating Focus Error and SA due to the Variation of Cover-Layer Thickness in Small-Form-Factor Optical Disk (초소형 광디스크의 보호층 두께 편차 보상용 1축 엑츄에이터)

  • Park, Jin-Moo;Hong, Sam-Nyol;Choi, In-Ho;Kim, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.227-231
    • /
    • 2004
  • Technological advance in information technology has sparked the necessity of small form factor (SFF) optical disk for mobile devices. Small form factor optical disk is highly anticipated to be a next generation storage device because it can be used for a cost-effective way compared with solid state memory. For the application to the 5 mm height small-form-factor optical disk drive, we have presented an optical flying head and swing arm actuator. In this study, we propose a small 1-axis actuator for compensating ficus error and SA due to the variation of cover-layer thickness in the cover-layered small optical disk. The main design issues of the 1-axis actuator are the realization of compact structure and the new support structure of the actuator: Finally, the compensating principle and performance of the 1-axis actuator will be explained.

  • PDF

Shape Sensitivity Analysis for the Optimal Design of Air Bearing Sliders of Optical Disk Drives (광디스크 드라이브 공기베어링 슬라이더의 최적설계를 위한 형상민감도 해석)

  • Kim, Hyun-Ki;Jang, Hyuk;Kim, Kwang-Sun;Lim, Kyong-Hwa;Jeong, Tae-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.742-747
    • /
    • 2000
  • The optical storage device has recently experienced significant improvements, especially for the aspects of high capacity and fast transfer rate. However, it is the fact that the optical storage device has the lower access time for the randomly scattered data compared to the hard disk drives. It is, therefore, necessary to develop a new type of optical storage system. In this study, we investigate the air bearing characteristics for the optical disk drives which have the swing arm actuator similarly to the hard disk drives. Considering the requirements of the optical disk drives, we parametrize the shape of the air bearing surface and investigate its sensitivity to the flying characteristics for further optimized design outputs.

  • PDF

Shape Sensitivity Analysis of Air Bearing Sliders of Optical Disk Drives (광디스크 드라이브 공기베어링 슬라이더의 형상민감도 해석)

  • Kim, Hyun-Ki;Jang, Hyuk;Kim, Kwang-Sun;Lim, Kyong-Hwa
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.37-42
    • /
    • 2000
  • The optical storage device has recently experienced significant improvements, especially for the aspects of high capacity and fast transfer rate. However, it is the fact that the optical storage device has the lower access time for the randomly scattered data compared to the hard disk drives. It is, therefore, necessary to develop a new type of optical storage system. In this study, we investigate the air bearing characteristics for the optical disk drives which have the swing arm actuator similar to the hard disk drives. Considering the requirements of the optical disk drives, we parameterize the shape of the air bearing surface and investigate its sensitivity to the flying characteristics for further optimized design outputs.

  • PDF

Dynamics of a Pico Slider during the Ramp Loading Process (Ramp Loading 피코 슬라이더의 거동 해석)

  • Rhim Yoon-Chul;Kim Bum-Joon;Cho Kwang-Pyo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.322-329
    • /
    • 2004
  • Recently, a load/unload(L/UL) system is adopted to the hard disk drive(HDD) due to its advantages such as lower power consumption, larger data zone, simpler fabrication of disk due to no bumped parking zone, and rarer contact between slider and media. An analysis of the transient motion for the slider is very important to design an air bearing surface(ABS) of the slider to secure the stable performance of the system. During the L/UL process, however, there are several issues occurred such as contact or collision between slider and media. Sometimes this will cause the system failure. In this study, the dynamics of a pico slider during the loading process are investigated through numerical simulation using FEM analysis and experiment. Ramp profile and angular velocity of the swing arm actuator are very important parameters for the design of L/UL system to avoid collision between slider and disk.

Design of a Robotic Device for Effective Shoulder Rehabilitation (효과적인 견관절 재활을 위한 로봇의 설계)

  • Lee, Kyoung-Soub;Park, Jeong-Ho;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.505-510
    • /
    • 2017
  • This paper presents a low-cost robotic device for shoulder rehabilitation, which is capable of treating various shoulder disabilities. A 3-DOF passive shoulder joint tracking module was designed to allow for translational motion of the shoulder joint center during arm swing, which is essential for natural shoulder movement. The weight of the user's arm and the device were compensated for by springs, to enable gravity-free shoulder motion. In order to reduce the device's cost, only one actuator was used, which can be aligned with the user's shoulder joint in various orientations. The device is capable of implementing five representative shoulder motions, including flexion/extension, abduction/adduction, horizontal abd/adduction, internal/external rotation, and oblique raise. The proposed low-cost shoulder rehabilitation robot is expected to provide effective rehabilitation for patients with various shoulder impairments.