• Title/Summary/Keyword: Swing Arm

Search Result 87, Processing Time 0.025 seconds

Kinematic Comparisons of Kettlebell Two-Arm Swings by Skill Level

  • Back, Chang-Yei;Joo, Ji-Yong;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.39-50
    • /
    • 2016
  • Objective: The purposes of this study were to compare the kinematics of a two-arm kettlebell swing between experts and beginners and to identify the correct postures and biomechanical key points in an attempt to prevent sports injuries induced by a kettlebell swing. Methods: Four experts (height, $169.7{\pm}1.5cm$; weight, $70.5{\pm}1.8kg$; age, $32.0{\pm}1.0years$) licensed to teach kettlebell exercises and three beginners (height, $173.7{\pm}4.1cm$; weight, $78.3{\pm}3.8kg$; age, $30.0{\pm}1.4years$) with no kettlebell exercise experience participated in this study. Each participant performed 15 repetitions of a two-arm kettlebell swing using a 16-kg weight. Joint angles, angular velocities, and peak angular velocity sequences were calculated and compared between the two groups. Results: Large ranges of motion (ROM) of the pelvic angle and hip joints were detected in the experts, while beginners showed greater ROM of the shoulder joint. Peak angular velocity magnitudes and sequences were significantly different between the two groups. Experts lifted the kettlebell upward using the hip joints, pelvis, and shoulder joints (proximal to distal order) sequentially and lowered it using the reverse order of peak angular velocities from the shoulder to hip joints. Conclusion: Mobility of the pelvic segment and hip joint are required, while stability of the other joints is needed to produce appropriate two-arm kettlebell swings. The activation and coordination of the gluteal and hamstring muscles are key points in kettlebell exercises.

Design of a Novel Gait Rehabilitation Robot with Upper and Lower Limbs Connections (상하지 연동된 새로운 보행재활 로봇의 설계)

  • Yoon, Jung-Won;Novandy, Bondhan;Christi, Christi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.672-678
    • /
    • 2008
  • This paper proposes a new rehabilitation robot with upper and lower limb connections for gait training. As humans change a walking speed, their nervous systems adapt muscle activation patterns to modify arm swing for the appropriate frequency. By analyzing this property, we can find a relation between arm swinging and lower limb motions. Thus, the lower limb motion can be controlled by the arm swing for walking speed adaptation according to a patent's intension. This paper deals with the design aspects of the suggested gait rehabilitation robot, including a trajectory planning and a control strategy. The suggested robot is mainly composed of upper limb and lower limb devices, a body support system. The lower limb device consists of a slider device and two 2-dof footpads to allow walking training at uneven and various terrains. The upper limb device consists of an arm swing handle and switches to use as a user input device for walking. The body support system will partially support a patient's weight to allow the upper limb motions. Finally, we showed simulation results for the designed trajectory and controller using a dynamic simulation tool.

The Effect of the Modified Bent Arm Torando Exercises to Weight Movement and Muscle Activity when Doing Drive Swing Motion from the Top to Impact Section

  • Bae, Sang Kyu;Yun, Su Bin;Kim, Jong Won;Lee, Jong Kyung;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.4
    • /
    • pp.149-154
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate effects of the modified bent arm tornado exercise on weight shift movement and muscle activity of the impact section in the top of the drive swing. Methods: Twenty subjects were divided professional golfer group and amateur golf group. Subjects were required to complete following modified bent arm tornado exercise. The activity and weight shift of the gluteus group and lower extremity muscles between the two groups were measured and the Wilcoxon rank test was analyzed. Results: The distribution of weight shift in the professional golfer group was higher than that of the amateur golfer group (p<0.05). During the golf downswing of the professional golfer group, muscle activation of the lower extremities was higher than that of the amateur golfer group (p<0.05). The distribution of weight shift after exercise by the amateur golfer group was higher than before (p<0.05). Conclusion: We could confirm was increased significantly of muscle activity and weight shift by applying modified bent arm tornado exercise through this study. This result suggests that exercise is needed to improve weight shift.

The Swing Restraint effects for Suspension I string type Jumper Devices (현수I련을 부가한 점퍼장치의 횡진억제효과 분석)

  • Sohn, H.K.;Lee, E.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.35-37
    • /
    • 1997
  • The jumper devices of overhead transmission lines are getting increased in size with the adaptation of higher voltage and bundled conductor. Incensement of jumper devices size caused to large swing angle and flashover with tower post or arm. The suspension I type string type jumper devices are used for swing restraint of suspension type. This paper is compared and analysized to its swing characteristics. The results showed that suspension I string type has a good effects.

  • PDF

Impact of Virtual Reality Based Neuromuscular Postural Control Fusion Training on Balance Ability and Jump Performance of Soccer Players with Functional Ankle Instability (가상현실 기반 자세조절 융합 훈련이 기능적 발목 불안정성 축구선수들의 균형과 점프에 미치는 영향)

  • Yang, Dae-Jung;Park, Seung-Kyu;Uhm, Yo-Han
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.357-367
    • /
    • 2016
  • In this study, we examined the impact on balance ability and jump performance of soccer players with functional ankle instability using virtual reality based neuromuscular posture control fusion training. Soccer players were divided into 15 people of virtual reality-based neuromuscular posture control fusion training group and 15 people of common treadmill training group and performed for 30 minutes three times a week for 8 weeks. In order to evaluate the balance of ability, using biorescue, it measured surface area, whole path length, limit of stability. In order to measure jump performance, it measured counter movement jump with arm swing and standing long jump. The results showed the statistically significant difference in the balance comparison of surface area, whole path length, limited of stability and the jump performance comparison of counter movement jump with arm swing, standing long jump. As a result, virtual reality-based neuromuscular posture control fusion training was found to be more effective to improve its balance ability and jump performance than common treadmill training.

Development of Outdoor Jacket Design using Energy Harvesting System by Arm Swing Motion during Walking (보행 시 팔의 교차 운동을 이용한 에너지 하베스팅 재킷 디자인 개발)

  • Lee, Hyewon;Lee, Minsun;Suh, Sung Eun;Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.300-307
    • /
    • 2019
  • This study develops a user centered outdoor jacket capable of energy harvesting based on consumer needs. Jackets are designed for typical outdoor activities such as hiking, trekking, and climbing, integrated with an energy harvesting module that can generate electric power from arm swing in outdoor and daily life walking. Textile based energy generators developed by the previous research of Lee & Roh (2018) were used. A prototype was created based on the arm swing motion experiment for location options and energy harvesting system functions, the simulation by the design sketch, and evaluation of the wearing test by experts. In-depth interviews were later conducted for the prototype with 10 outdoor experts to derive the optimal location of an energy harvesting system in three ways, and the prototype was revised to 5 styles that reflected reviews by experts on function and appearance. Research indicated that the energy harvesting jacket design signifies a user-centered design based on expert interviews and usability evaluation as well as previous research on energy generation and storage device. The jacket is convenient because it combines an energy generator in an optimal position to maximize energy generation with a storage and charging device that can be inserted into various position options for accessibility.

Direct Seek Control for Swing-arm Type Dual Stage Actuators in Blu-Ray Disc Drive Systems

  • Ryu, Shi-Yang;Jung, Soo-Yul;Yoon, Hyeong-Deok;Park, In-Shik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.735-739
    • /
    • 2003
  • This paper presents a direct seek control algorithm for swing-arm type dual stage servo system that consists of a coarse actuator and a fine actuator. The proposed scheme is to design a control system that attenuates the effect of dynamic coupling between the two actuators so that the seek operation can be performed in a single-shot with stability. In an optical drive system with dual stage servo mechanism, the effect of dynamic coupling between the two actuators needs to be handled during the coarse seek operation due to its inherent structure. In an extreme case, the two actuators can collide each other, which leads to critical degradation of the seek performance. To handle this problem, our proposed control scheme is to generate the drive signals such that the two actuators behave as if they are a single fixed body. To this end, a feedforward controller and two feedback controllers are designed that enable the current drive system perform wide range of track seek. Simulation results are provided to show the validity and feasibility of our proposed algorithm.

  • PDF

Micro Thermal Design of Swing-Arm Type Small Form Factor Optical Pick-up System (스윙 암 타입 초소형 광 픽업 시스템의 방열 설계)

  • Lee, Jee-Na;Kim, Hong-Min;Kang, Shin-Ill;Sohn, Jin-Seung;Lee, Myung-Bok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • The new multimedia information environment requires smaller optical data storage systems. However, one of the difficulties encountered in designing small form factor(SFF) optical pick-up is to emit the heat which is generated from laser diode(LD). Heat generated at the LD can reduce the optical performance of the system and the lifetime of LD. Therefore, it is important to include the thermal design in the design stage of SFF optical pick-up system for high performance and the longer lifetime of LD, and furthermore, to analyze the thermal characteristics of LD in detail micro heat transfer analysis is necessary. In the present study, micro heat transfer analysis was performed using the finite element method for the $28{\times}11{\times}2mm^3$ super slim swing-arm type optical pick-up actuator for Blu-ray disk. Two different materials were used for a swing-arm; a double layer polycarbonate/steel structure and a single aluminum structure.

  • PDF

Change of lower limb muscle activation according to the use of arm sling in normal subjects (정상인의 팔걸이 사용에 따른 보행 시 하지 근 활성도의 변화)

  • Oh, Gku Bin;Son, Ga Eul;Kim, Seo Yeon;Kim, Hae Deun;Back, Seung Min;Song, Hyen Su;Yun, Sang Hyeok;Cho, Ki Hun
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.3
    • /
    • pp.67-74
    • /
    • 2020
  • Background: The purpose of this study was to investigate the change of lower limb muscle activation according to the use of arm sling in normal subjects. Design: Cross-sectional Study Methods: Seven healthy subjects (6 males and 1 female, 25.42 years, 173.57 cm, 71.71 kg) were recruited on a voluntary basis. To measure the lower limb muscle activation during walking with and without arm sling, we used a wireless surface electromyography (sEMG) (FreeEMG1000, BTS Bioengineering, Milano, Italy). Six wireless sEMG electrodes were attached to the following three major muscle groups of the both side lower limb: rectus femoris, biceps femoris, medial gastrocnemius. All subjects wore arm sling on their right side during measurement. Results: In the stance phase, there was a significant increase in right side rectus femoris muscle activation in walking without arm sling compared to the walking with arm sling (p<.05). Additionally, In the stance phase, there was a significant increase in left side tibialis anterior muscle activation in walking without arm sling compared to the walking with arm sling (p<.05). Conclusion: The results of this study suggest that there is a significant association between the arm swing restriction and lower limb muscle activation. Therefore, it seems that it can be applied as basic data for gait training with an arm slings.

The Analysis of Electromyography and Kinematic of Kumdo Player's Head Hitting (검도 머리치기 동작의 근전도 및 운동학적 분석)

  • Park, Jong-Rul
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2005
  • J. R. PARK. The Analysis of Electrimyography and Kinematic of Kumdo Player's Head Hitting. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 63-74, 2005. The purpose of this study were to describe and compare the selected electromyographical muscle activities of arm and kinematic data of kumdo player's head hitting. Using surface electrode electromyography, we evaluated muscle activity in 6 male players during head hitting motion. Surface electrodes were used to record the level of muscle activity in the carpi radialis, deltoid, triceps, biceps muscles during the player's head hitting. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The kumdo head hitting motion was divided into two phases: back swing, down swing. we observed patterns of arm muscle activity throughout two phases of the kumdo head hiting The results can be summarized as follows: right elbow angle had decreased and left deltoid muscle's activation had higher than right deltoid muscle's activation, right carpi radialis muscle's activation had higher than left carpi radialis muscle's activation in back swing phase, knee angle had decreased and left triceps muscle's activation had higher than right triceps muscle's activation, right deltoid muscle's activation had higher than left deltoid muscle's activation, right carpi radialis muscle's activation had higher than left carpi radialis muscle's activation in down swing phase