• Title/Summary/Keyword: Swine wastewater

Search Result 133, Processing Time 0.034 seconds

The Treatment of Swine Wastes and the Production of High Protein Feedstocks from Photoheterotrophic Growth of Spirulina platensis (Spirulina platensis를 이용한 축산 폐수처리 및 고단백 사료원의 생산)

  • Sung, Ki-Heun;Lee, Chung-Ho;Park, Young-Shik;Kim, Hyun-Kyu;Yu, Ho-Keum;Ohh, Sang-Jip;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.197-202
    • /
    • 1994
  • Microalga, Spirulina platensis has been cultivated in a pilot scale photo-bioreactor to treat wastewater and to produce high protein feedstocks from swine waste containing medium. 0.31(1/day) of specific growth rate and 0.170 of bioenergeric yield were obtanined from batch cultivation in 30% waster containing medium, compared to 0.71(1/day) and 0.545 from clean culture. An optimal dilution concentration was decided as 20% of working volume, based upon the cell growth and biomass productivity. The removal rate of nitrates in the wastewater was decreased as the adding concentration of wastewater was increased while the decrease of total phosphates was reversed, showing 0.33(1/day) and 0.30(1/day) of rate constants for nitrate removal in 10% addition and for phosphate removal in 30% addition, respectively. The chemical composition and amino acid profile of the biomass were superior to those of commerically available health food product, Spirulina sp.

  • PDF

Assessment of Airborne Microorganisms in a Swine Wastewater Treatment Plant

  • Kim, Ki-Youn;Ko, Han-Jong;Kim, Daekeun
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.211-216
    • /
    • 2012
  • Quantification of the airborne microorganisms (bacteria and fungi) at a swine wastewater treatment plant was performed. Microbial samples were collected at three different phases of the treatment process over a 1-yr period. Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria and fungi were performed. The concentrations of airborne bacteria ranged up to about $5{\times}10^3$ colony-forming unit (CFU)/$m^3$, and those of airborne fungi ranged up to about $9{\times}10^2CFU/m^3$. The primary treatment (e.g., screen, grit removal, and primary sedimentation) was found to be the major source of airborne microorganisms at the site studied, and higher levels of airborne bacteria and fungi were observed in summer. High levels of the respirable bioaerosol (0.65 to $4.7{\mu}m$ in size) were detected in the aeration phase. Among the environmental factors studied, temperature was strongly associated with fungal aerosol generation (with a Spearman correlation coefficient of 0.90 and p-value <0.01). Occupational biorisks are discussed based on the observed field data.

Biomass Production Potential of Chlorella vulgaris Under Different CO2 Concentrations and Light Intensities

  • Lee, Chang-Min;Kim, Mi-Jeong;Sanjay, Kumar;Kwag, Jung-Hoon;Ra, Chang-Six
    • Journal of Animal Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.261-268
    • /
    • 2011
  • The increasing demand of the crops (soybean and corn) for biofuel production has increased the focus of the animal nutritionists to look for alternative feeds, which are economic and environmental friendly. To identify microalgae as suitable candidate as an alternative feed, growth response of Chlorella vulgaris was studied under varying concentrations of carbon dioxide (0.07, 1.4, 3.0 and 5.0%) and photon densities (39.19, 72.97, 105.41, 116.22, 135.14, $175.68\;{\mu}mol/m^2/s$) by employing a photo-bioreactor. Swine wastewater was also investigated as nutritional source to economize the biomass production. Results showed that the higher biomass production was found to be at 3.0% $CO_2$ compared to other $CO_2$ concentrations. However, no difference in biomass production was found at $105.41\;{\mu}mol/m^2/s$ and above photon densities with 12 h of photoperiodicity. It was observed that C. vulgaris could easily grow in 200 times diluted swine wastewater and growth was found to be similar with that of artificial medium. Provided the conducive conditions for optimal growth, it has also the potentiality of depleting ammonia nitrogen ($NH_4$-N) and orthophosphate ($PO_4^{3-}$-P) completely from the wastewater after 3~4 days of cultivation. Thus, growing C. vulgaris would not only solve the problem of animal feed, but also help in biological $CO_2$ mitigation and wastewater treatment.

Treating Swine Wastewater by Anaerobic Bioreactors (혐기성 생물반응기에 의한 축산폐수의 처리)

  • Lee, Gook-Hee;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.54-60
    • /
    • 1999
  • Three different types of lab-scale anaerobic bioreactors, AF and two-stage ASBF-PR and ASBF-SP, were evaluated in treating swine wastewater by operating at $1{\sim}2$ days of hydraulic retention time with increasing organic loading rate upto 6.3 $kg-COD/m^3{\cdot}d$ at $35^{\circ}C$. Seeding the anaerobic bioreactors with waste anaerobic digester sludge from a municipal wastewater treatment plant was effective and a 40-day acclimation period was required for steady-state operation. Three anaerobic bioreactors were effective in treating swine wastewater with COD removal efficiency of $66.4{\sim}84.9$% and biogas production rate of $0.333{\sim}0.796m^3/kg-COD_{removed}{\cdot}d$. Increases of organic loading rate by increasing influent COD concentration and/or decreasing hydraulic retention time caused decreases in COD removal efficiency and increases in biogas production rate. At relatively high organic loading rate employed in this study, the treatment efficiency of AF and ASBF-PR were similar but superior than that of ASBF-SP, indicating that porosity and pore size of the media packed in the bioreactors are more important factors contributing the performance of to bioreactors than specific surface area of the media. TKN in swine wastewater must be removed prior to the anaerobic processes when anaerobic process is considered as a major treatment process since influent TKN concentration of $1,540{\sim}1,870mg/L$ to the bioreactors adversely affect the activity of methanogenic bacteria, resulting in decreases of treatment efficiency and biogas production rate by 50%.

  • PDF

A Practical Study on the Solid-Liquid Separation of the Swine Wastewater from Slurry Feedlot (슬러리 양돈분뇨의 최적 고액분리 방안 연구)

  • Park, Seung-Kyun;Choi, Jae-Gil;Chung, Yoon-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.60-70
    • /
    • 2000
  • The swine wastewater from slurry feedlot has been a social problem in Korea since the proper treatment is very difficult. Therefore, a practical study on the Solid-Liquid separation of swine wastewater from slurry feedlot was carried out as a pan of pretreatment for the successful biological treatment. The appropriate type of coagulant and optimum dosage were proposed for the most efficient Solid-Liquid separation and the best Solid-Liquid separation methods for different size of feedlot were determined through the tests with field-scaled Solid-Liquid separation equipment. The appropriate coagulant for the conditioning of dewatering property was E-851, which is a cationic polyelectrolyte made of polyacrylamide, and the optimum dosage was 0.24~0.6% of unit solids weight. Mesh Screen, Drum Screen, Cyclone Drum Filter, Screw Press, High-speed Screw Decanter, Low-speed Screw Decanter, and Dissolved Air Flotation Process had been investigated in this study. According to the results, the Screw Press was the best dewatering equipment for the small & medium size for feedlot and low-speed Screw Decanter was the best for the large size feedlot & public owned treatment facilities for the primary Solid-Liquid separation, and the most suitable secondary treatment process was DAF. On the other hand, reductions for the requirement of bulking agent and organic loading by Solid-Liquid separation process were 94.8% and 84.7%, respectively Therefore, the Solid-Liquid separation process must be required for the successful treatment of swine wastewater from slurry feedlot.

  • PDF

Performance Evaluation of Anaerobic Bioreactors and Effects of Ammonia on Anaerobic Digestion in Treating Swine Wastewaters

  • Lee, Gook-Hee;Seo, Jun-Won;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.195-201
    • /
    • 2006
  • The operational characteristics of anaerobic bioreactors in treating swine wastewater were evaluated upto hydraulic retention time (HRT) of 1 day and organic loading rate (OLR) of $5.1kg-COD/m^3{\cdot}d$ for 200 days. The bioreactors were effective in treating swine wastewaters with COD removal efficiency of $78.9{\sim}81.5%$ and biogas generation of $0.39{\sim}0.59m^3/kg-COD_r$ at OLR of $1.1{\sim}2.2kg-COD/m^3{\cdot}d$. The two-stage ASBF anaerobic bioreactors was effective in treating different characteristics of swine wastewaters since they showed high and stable COD removal efficiency at high OLR due to effective retention of biomass by media and staging. The effects of ammonia on anaerobic digestion were investigated by operating two-stage ASBF reactors using swine wastewaters as influent without and with ammonia removal at HRT of $1{\sim}2$ days and OLR of $2.2{\sim}9.6kg-COD/m^3{\cdot}d$ for 250 days. The COD removal efficiency and biogas generation of two-stage ASBF reactors was decreased by increasing influent ammonia concentrations to 1,580 mg (T-N)/L with increasing OLR to $6.3kg-COD/m^3{\cdot}d$, while those were increased by maintaining influent ammonia concentrations below 340 mg (T-N)/L by MAP precipitation with increasing OLR to $9.6kg-COD/m^3{\cdot}d$. Initial inhibition of ammonia on anaerobic processes was observed at a concentration of 760 mg (T-N)/L and the COD removal efficiency and biogas generation dropped to 1/2 at ammonia concentration ranges of $1,540{\sim}1,870mg$ (T-N)/L. It is essential to remove ammonia in swine wastewaters to an initial inhibition level before anaerobic processes for the effective removal of COD.

A Study on the Swine Wastewater Treatment Using UV/TiO2/H2O2 (UV/TiO2/H2O2를 이용한 축산폐수처리에 대한 연구)

  • Kim, Chang-Kyun;Chung, Ho-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.321-327
    • /
    • 2006
  • This study was performed to provide basic information for evaluating the efficiency and applicable extent of photocatalysis for the treatment of swine wastewater. Acid area was more efficient than neutral and alkalic areas in wastewater treatment, and level of pH3 was the most effective and the treatment efficiency continually increased as the amount of photocatalyst was increased. When the photocatalyst was increased, $TCOD_{Mn}$ was removed faster than chromaticity. Pollutants were more effectively eliminated with both UV light illumination and $TiO_2$ than with either UV or $TiO_2$ alone. The removal efficiency was increased with the addition of $H_2O_2$ as an oxidant, but the removal efficiency was decreased with over an dosage of $H_2O_2$. The optimal dosage of $H_2O_2$ was 200 mg/L. Continuous injection of $H_2O_2$ was required for effective oxidation.

A Study on the Treatment of Swine Wastewater by Using Intermittently Aerated Activated Sludge Process (간헐폭기법에 의한 돈사 폐수 처리에 관한 연구)

  • Yang, Tae-Du;Lee, Mi-Kyung;Chung, Yoon-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.86-96
    • /
    • 1998
  • In this study, an intermittently aerated activated sludge process, modified process from conventional activated sludge process, was developed to treat high strength swine wastewater, which has been blamed as major pollutant for stream pollution. Therefore, the optimum cycle for oxic and anoxic period, SRT, and OLR were studied as design parameters. The effects of different time interval for oxic and anoxic period on nitrification and denitrification were examined by operating two reactors with 60/60min and 60/90min as oxic/anoxic period. Although the reactor with 60/60min showed complete denitrification of $NO_x-N$ generated during oxic period, the reactor with 60/90min showed incomplete nitrification due to the inactivity of nitrifier by accumulated $NH_3-N$ toxicity during anoxic period. Therefore, it is recommended to operate same interval for oxic and anoxic period. In order to determine the optimum cycle for oxic/anoxic period, four different reactors with 30/30, 60/60, 90/90 and 120/120min were examined. The reactor operation with 90/90min was optimum to get the most stable results in this study. However, the optimum cycle for oxic and anoxic period should be changed with characteristics of influent wastewater and operating conditions. According to lie operation results of three reactors with SRT of 15, 20 and 30days. The reactor with 2Odays SRT showed best removal efficiency of T-N. The optimum OLR would be $2.5Kg\;COD/m^3/day$ which showed the most stable nitrification and denitrification. Since characteristics of influent wastewater in the real system has a severe fluctuation, so it is very difficult to determine each interval for oxic and anoxic period. Therefore, ORP curves, describing the change of oxidation/reduction potential in reactor, can be used as a control parameter for automatic control of oxic and anoxic period. In other words, bending point (Nitrate Knee) of ORP curve during anoxic period could be used as a starting point of oxic period.

  • PDF

The Effect of Substrates and Nitrate on Biological Phosphorus Release (생물학적 인 방출시 유기물 및 질산염에 대한 영향)

  • Min, Kyung-Kook;Weon, Seung-Yeon;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.141-148
    • /
    • 2000
  • In this study, effects of substrates and nitrate on biological phosphorus release in EBPR(enhanced biological phosphorus removal) process were examined using batch test apparatus at anaerobic conditions. The sludge used in this experiments was taken from SBR(sequencing batch reactor) treating swine wastewater at aeration period. Phosphorus release rates obtained with substrates of FSW(fermented swine wastewater), acetate, propionate, domestic wastewater and methanol were 6.19, 5.99, 1.52, 1.2 and $1.03mgP/gVSS{\cdot}hr$, respectively. Those observed with acetate and FSW were 4~5 times greater than those with propionate, methanol and domestic wastewater. Therefore phosphorus release rates were significantly affected by type of substrate added at anaerobic condition. Phosphorus release was greatly affected by concentration of nitrate in anoxic condition. Comparing to acetate, propionate and FSW, phosphorus release was observed after almost completely depletion of nitrate concentration with methanol and domestic wastewater added as substrate. In the cases supplied with acetate, propionate and FSW, phosphorus release rates were less influenced by a nitrate concentration than those with methanol and domestic wastewater.

  • PDF

A Study on the Treatment of Swine Wastewater Using Titanium Dioxide Prepared by Hydrothermal Method (수열합성법으로 제조된 이산화티탄에 의한 축산폐수 처리에 관한 연구)

  • Yang, Jin-Seop;jung, Won Young;Baek, Seung Hee;Lee, Gun Dae;Park, Seong Soo;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.148-154
    • /
    • 2007
  • This study was performed to evaluate the application of $TiO_2$ on the photocatalytic treatment of swine wastewater. $TiO_2$ sol was prepared by hydrothermal method with the agent ratio($(C_2H_5)_2NH_2\;mol/Ti(OC_3H_7)_4\;mol)=1$ and R ratio ($H_2O\;mol/Ti(OC_3H_7)_4\;mol)=42$. The effect of parameter on the removal efficiency of swine wastewater in a batch type immobilized photocatalyst system such as initial pH, intensity of UV, dosage of $TiO_2$, air flow rate, and concentration of $H_2O_2$ was examined. Wastewater was effectively eliminated in the presence of both UV light illumination and $TiO_2$. Photocatalytic activity was higher in acidic condition compared to neutral and alkaline conditions. In addition, photocatalytic activity increased with increasing UV light intensity, dosage of $TiO_2$, the flow rate of air and the amount of $H_2O_2$ added as an oxidant, but the excess amount of $H_2O_2$ dosage decreased the removal efficiency.