• 제목/요약/키워드: Swine Leukocyte Antigen (SLA)-I

검색결과 4건 처리시간 0.017초

Analysis of Swine Leukocyte Antigen Haplotypes in Yucatan Miniature Pigs Used as Biomedical Model Animal

  • Choi, Nu-Ri;Seo, Dong-Won;Choi, Ki-Myung;Ko, Na-Young;Kim, Ji-Ho;Kim, Hyun-Il;Jung, Woo-Young;Lee, Jun-Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권3호
    • /
    • pp.321-326
    • /
    • 2016
  • The porcine major histocompatibility complex (MHC) is called swine leukocyte antigen (SLA), which controls immune responses and transplantation reactions. The SLA is mapped on pig chromosome 7 (SSC7) near the centromere. In this study, 3 class I (SLA-1, SLA-3, and SLA-2) and 3 class II (DRB1, DQB1, and DQA) genes were used for investigation of SLA haplotypes in Yucatan miniature pigs in Korea. This pig breed is a well-known model organism for biomedical research worldwide. The current study indicated that Korean Yucatan pig population had 3 Class I haplotypes (Lr-4.0, Lr-6.0, and Lr-25.0) and 3 class II haplotypes (Lr-0.5, Lr-0.7, and Lr-0.25). The combinations of SLA class I and II haplotype together, 2 homozygous (Lr-4.5/4.5 and Lr-6.7/6.7) and 3 heterozygous (Lr-4.5/6.7, Lr-4.5/25.25, and Lr-6.7/25.25) haplotypes were identified, including previously unidentified new heterozygous haplotypes (Lr-4.5/4.7). In addition, a new SLA allele typing method using Agilent 2100 bioanalyzer was developed that permitted more rapid identification of SLA haplotypes. These results will facilitate the breeding of SLA homozygous Yucatan pigs and will expedite the possible use of these pigs for the biomedical research, especially xenotransplantation research.

Genetic diversity analysis in Chinese miniature pigs using swine leukocyte antigen complex microsatellites

  • Wu, Jinhua;Liu, Ronghui;Li, Hua;Yu, Hui;Yang, Yalan
    • Animal Bioscience
    • /
    • 제34권11호
    • /
    • pp.1757-1765
    • /
    • 2021
  • Objective: The swine leukocyte antigen (SLA) gene group, which is closely linked and highly polymorphic, has important biomedical significance in the protection and utilization of germplasm resources. However, genetic polymorphism analyses of SLA microsatellite markers in Chinese miniature pigs are limited. Methods: Eighteen pairs of microsatellite primers were used to amplify the SLA regions of seven miniature pig breeds and three wild boar breeds (n = 346) from different regions of China. The indexes of genetic polymorphism, including expected heterozygosity (He), polymorphic information content (PIC), and haplotype, were analyzed. The genetic differentiation coefficient (Fst) and neighbor-joining methods were used for cluster analysis of the breeds. Results: In miniature pigs, the SLA I region had the highest numbers of polymorphisms, followed by the SLA II and SLA III regions; the region near the centromere had the lowest number of polymorphisms. Among the seven miniature pig breeds, Diannan small-ear pigs had the highest genetic diversity (PIC value = 0.6396), whereas the genetic diversity of the Hebao pig was the lowest (PIC value = 0.4330). The Fst values in the Mingguang small-ear, Diannan small-ear, and Yunnan wild boars were less than 0.05. According to phylogenetic cluster analysis, the South-China-type miniature pigs clustered into one group, among which Mingguang small-ear pigs clustered with Diannan small-ear pigs. Haplotype analysis revealed that the SLA I, II, and III regions could be constructed into 13, 7, and 11 common haplotypes, respectively. Conclusion: This study validates the high genetic diversity of the Chinese miniature pig. Mingguang small-ear pigs have close kinship with Diannan small-ear pigs, implying that they may have similar genetic backgrounds and originate from the same population. This study also provides a foundation for genetic breeding, genetic resource protection, and classification of Chinese miniature pigs.

Inhibition of Human $CD8^+$ Cytotoxic T Lymphocyte (CTL) -mediated Cytotoxicity in Porcine Fetal Fibroblast Cells by Overexpression of Human Cytomegalovirus Glycoprotein Unique Short (US) 2 Gene

  • Park, K-W.;Yoo, J.Y.;Choi, K.M.;Yang, B.S.;Im, G.S.;Seol, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.20-25
    • /
    • 2009
  • Xenotransplantation of pig organs into humans is a potential solution for the shortage of donor organs for transplantation. However, multiple immune barriers preclude its clinical application. In particular, the initial type of rejection in xenotransplantation is an acute cellular rejection by host $CD8^+$ cytotoxic T lymphocyte (CTL) cells that react to donor major histocompatibility complex (MHC) class I. The human cytomegalovirus (HCMV) glycoprotein Unique Short (US) 2 specifically targets MHC class I heavy chains to relocate them from the endoplasmic reticulum (ER) membrane to the cytosol, where they are degraded by the proteasome. In this study we transfected the US2 gene into minipig fetal fibroblasts and established four US2 clonal cell lines. The integration of US2 into transgenic fetal cells was confirmed using PCR and Southern blot assay. The reduction of Swine Leukocyte Antigen (SLA)-I by US2 was also detected using Flow cytometry assay (FACS). The FACS analysis of the US2 clonal cell lines demonstrated a substantial reduction in SLA-I surface expression. The level (44% to 76%) of SLA-I expression in US2 clonal cell lines was decreased relative to the control. In cytotoxicity assay the rate of $CD8^+$ T cell-mediated cytotoxicity was significantly reduced to 23.8${\pm}$15.1% compared to the control (59.8${\pm}$8.4%, p<0.05). In conclusion, US2 can directly protect against $CD8^+$-mediated cell lysis. These results indicate that the expression of US2 in pig cells may provide a new approach to overcome the CTL-mediated immune rejection in xenotransplantation.

SLA Homozygous Korean Native Pigs and Their Inbreeding Status Deduced from the Microsatellite Marker Analysis

  • Jung, Woo-Young;Lim, Hyun-Tae;Lim, Jae-Sam;Kim, Sung-Bok;Jeon, Jin-Tae;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • 제52권6호
    • /
    • pp.451-457
    • /
    • 2010
  • The porcine MHC (Major Histocompatibility Complex), encoding the SLA (Swine Leukocyte Antigen) genes, is one of the most significant regions associated with immune rejection in relation to transplantation. In this study, three SLA class I (SLA-1, SLA-3, SLA-2) loci and three SLA class II (DRB1, DQB1, DQA) loci were investigated in the previously unidentified Korean native pig (KNP) population that was closely inbred in the Livestock Technology Research Station in Cheongyang, Korea. Total thirteen KNPs from four generations were genotyped for the SLA alleles and haplotypes were investigated using PCR-SSP (Sequence-Specific Primer) method. The results showed that all of these KNPs had Lr-56.30/56.30 homozygous haplotype, indicating high level of inbreeding in the SLA genes. The inbreeding status of these animals was also investigated using microsatellite (MS) markers. From the 50 MS markers investigated, 17 MS markers were fixed in all generations and the fixed alleles are increased as 26 loci for the fourth generation. Two MS markers, S0069 and SW173, were heterozygous for all the animals tested. Observed and expected heterozygosities were calculated and the average inbreeding coefficients for each generation were also calculated. In the fourth generation, the average inbreeding coefficients was 0.732 and this may increase with further inbreeding process. Analysis of the SLA haplotypes and MS alleles can give important information for breeding the pigs for xenotransplantation studies.