• Title/Summary/Keyword: Swim Mode

Search Result 6, Processing Time 0.024 seconds

Morphological Properties and Target Strength Characteristics for dark banded rockfish (Sebastes inermis) (볼락의 형태학적 특징과 음향반사강도 특성)

  • Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.120-127
    • /
    • 2015
  • Morphological properties of dark banded rockfish (Sebastes inermis) were analysed to investigate its acoustic scattering characteristics. Total of 18 live samples was prepared for X-ray photos and collected morphological coordinates of their body and swim bladder shapes. Kirchhoff-ray mode model was used to calculate acoustic scattering pattern for broad-band frequency range. Inclination of swim bladder ranged from 17 to 30 and the averaged value was about $25.2^{\circ}$ (S.D.(standard deviation)=3.15). There were no any tendency of increase or decrease in volume and area ratio of swim bladder to fish body and ranged from 2.2 % to 4.43 % and 14.85 % to 21.31 %, respectively. The averaged value of volume and area ratio was 3.13 % (S.D.=0.52) and 17.6 % (S.D.=1.5). $b_{20}$ values were -69.01 for 38 kHz, -69.83 for 70 kHz, -70.17 for 120 kHz and -70.93 for 200 kHz, recpectively. Broadband acoustic patterns of dark banded rockfish for 20 ~ 200 kHz were similar among samples and they reflected size and morphological properties of fish species.

Verification and application of Target Strength for Japanese anchovy (Engraulis japonicas) by theoretical acoustic scattering model (이론모델을 이용한 멸치의 음향산란강도의 검토 및 적용)

  • Hwang, Kangseok;Lee, Kyounghoon;Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.487-494
    • /
    • 2012
  • Acoustical backscattering characteristics of Japanese anchovy can be estimated by Kirchhoffray mode model (KRM model) due to estimate exact body and swim-bladder shape of the fish, the samples were rapidly frozen by dry-ice and alcohol. X-ray photos for ventral and lateral direction for 6 samples were taken and the 3D coordinates of the body swim-bladder were estimated by digitizing from the photos. The angles between the axis of body and swim-bladder were about $9^{\circ}$ at 38kHz and $7^{\circ}$ at 120kHz, 200kHz. General formula of TS and BL estimated were < $TS_{38kHz}$ >=20logBL-67.3, < $TS_{120kHz}$ >=20logBL-66.6, < $TS_{200kHz}$ >=20logBL-67.0. As a result, we confirmed KRM model is very useful to estimate TS (Target Strength) for design of experiment and it also can be applied to estimate the abundance of Japanese anchovy distributed by 2 frequency difference method in the survey area.

Spawning Behavior of Microphysogobio koreensis(Cyprinidae) in Korea (모래주사 Microphysogobio koreensis(Cyprinidae)의 산란행동)

  • Park, Jong Sung;Yoon, Seung Woon;Kim, Jae Goo;Kim, Hyun Tae;Park, Cheol Woo;Kim, Hyeong Su;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.33 no.1
    • /
    • pp.8-14
    • /
    • 2021
  • Spawning behavior of the endangered Korean fish, Microphysogobio koreensis, was investigated in the Seomjingang (river), Imsil-gun, South Korea, during the spawning season, April to May 2012. The mating system of M. koreensis, a broadcast spawner, was a primitive spawning mode, and involved one male and one female, unlike group spawning fishes. Spawning behavior of M. koreensis in the wild were observed in eight patterns as resting, male chase, body beating, parallel swim, female withdrawal, male competition, spawning and not guard while spawning behavior in the glass tank were verified in six patterns as resting, male chase, body beating, parallel swim, spawning and not guard. In particular, a behavioral attempt of the pre-spawning stage showed more frequently in the wild than in the glass tank. We assume that difference of spawning behavior might be implication on behavioral restrictions in small and narrow indoor glass tank.

Determining the target strength bambood wrasse (Pseudolabrus japonicus) using Kirchhoff-ray mode

  • Kusdinar, Afriana;Hwang, Bo-Kyu;Shin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.427-434
    • /
    • 2014
  • Although ex situ target strength (TS) measurements using dual- and split-beam systems have become the primary approach of estimating fish abundance, theoretical model estimation is a powerful tool for verifying the measurements, as well as for providing values when making direct measurements is difficult. TS values for 20 samples of live bambooleaf wrasse (Pseudolabrus japonicus) whose target length (TL) ranged between 13.7 and 21.3 cm were estimated theoretically using the Kirchhoff-ray mode model, and the TS values for 18 live fish samples were additionally measured at ${\sim}0^{\circ}$ tilt angle to the swimming aspect using a tethered method at a frequency of 120 kHz to verify the theoretical values. The digitizing intervals used to extract the fish body and swim bladder morphology in the X-ray photographs significantly affected the calculated TS patterns, but variations based on the speed of sound and density ratio values for the general range of fish flesh were relatively small (within 1 dB). Close agreement was observed between the measured and theoretical TS values, and the correlation between the average TS and body length of the fish could be calculated accurately as <$TS_{120kHz}$>= 20logTL (cm) -71.6 using the theoretical method.

Swimming behavior monitoring of Pacific bluefin tuna (Thunnus orientalis) in the offshore sea cage using the imaging sonar (이미징 소나를 이용한 외해가두리 내 참다랑어의 유영 행동 모니터링)

  • Bo-Kyu HWANG;Myounghee KANG;Min-Son KIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • The swimming behavior of pacific bluefin tuna (Thunnus orientalis) in the offshore sea cage of the brass fishing net was observed and analyzed by imaging sonar techniques. The cultured fish spent most of the time swimming a circular path along the circular cage wall and continued to swim only clockwise direction without completely changing the swimming direction during the 23-hour observation time. In addition, changed swimming behaviors were divided into four categories: (a) the behavior of a large group temporarily swimming in the opposite (counter clockwise) direction, (b) the behavior of a small group temporarily swimming in a small circular path, (c) the behavior swimming small circular path in the center of the cage, and (d) the behavior of a large group swimming across the center of the cage. The maximum swimming speed of the cultured fish was from 3.5 to 3.8 TL/s, the mode was from 1.2 to 1.4 TL/s and the swimming speed during the day time was faster than at night time. It was confirmed the cultured fish swam not only on the surface but also near the bottom net of the cage during the day, but swam mainly at the upper part of the cage at night.