• Title/Summary/Keyword: Sweep variables

Search Result 31, Processing Time 0.013 seconds

Stand Structure and Sapling Growth Characteristics of Korean Red Pine Stands Regenerated by the Seed Tree Method (소나무 모수림 시업지의 임분구조 및 치수생육특성)

  • Lee, Daesung;Choi, Jungkee
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.678-688
    • /
    • 2021
  • This study was conducted to provide growth characteristics and stand information in preparation for natural regeneration method and silvicultural treatment of seed tree method in Korean red pine stands by using the field inventoried data 18 years after the seed tree regeneration method in 2001 and analyzing the stand and sapling characteristics. The study area was located in the Research Forest of Kangwon National University, Chuncheon-si, Gangwon-do. In November 2018, we collected tree measurement factors, such as diameter at breast height (DBH), height, crown class, stem quality, tree age, and annual height increment on the established plots. We calculated the basal area, volume, height-diameter ratio (HD ratio), and additional stand density variables such as the relative density and %stocking to analyze the managed stands. The number of mother trees was 58 trees/ha, with a 17.7% stocking level, whereas the number of saplings was 2,330 trees/ha, with a 79.0% stocking level. In germination, the age distribution of saplings ranged from 2001 to 2007, with most belonging to 15-16 years. The development condition of saplings was 10 cm in DBH and 8 m in height. DBH and height were higher as the crown class is more dominant, and this difference was statistically significant in the analysis of variance and Duncan's multiple comparison test (p<0.0001). HD ratio ranged mostly between 80% and 90%, and more than 95% of sapling stems were of high quality, with a straight, unbroken top, non-sweep, and non-diseased stem. On average, the annual height increment of saplings was 21.9 cm at 1 year, 43.3 cm at 5 years, 54.3 cm at 10 years, and 64.3 cm at 15 years. The overall height growth with age increased smoothly. According to the analysis of covariance, the annual height growth by crown class differed significantly. The regression analysis parameters revealed that annual height growth increased with age and dominant crown class.