• 제목/요약/키워드: Sweep Line Algorithm

검색결과 13건 처리시간 0.017초

NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화 (Multi-Objective Optimization of a Fan Blade Using NSGA-II)

  • 이기상;김광용;압두스사마드
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

대용량 GPS 궤적 데이터를 위한 효율적인 클러스터링 (An Efficient Clustering Algorithm for Massive GPS Trajectory Data)

  • 김태용;박보국;박진관;조환규
    • 정보과학회 논문지
    • /
    • 제43권1호
    • /
    • pp.40-46
    • /
    • 2016
  • 도로지도 생성은 인공위성 촬영이나 현장실사를 기반으로 한다. 그리하여 도로지도를 생성하고 수정하는데 많은 시간과 비용이 든다. 이러한 이유로 차량 GPS 데이터를 이용해 도로지도를 생성하는 연구가 활발히 진행되고 있다. 도로지도 생성 연구에서 가장 중요한 문제는 주도로와 같은 대표궤적을 추출하는 것이다. 대표궤적 추출을 수행할 때에는 시작과 끝이 비슷한 궤적데이터들의 집합을 전제로 하여 궤적을 추출한다. 따라서 대표궤적을 추출하기에 앞서 전처리 과정으로 궤적 클러스터링 작업이 필요하다. 본 논문에서는 이러한 문제를 해결하기 위해 하나의 영역을 일정한 격자로 분할하고, Sweep Line 알고리즘을 응용해 유사궤적들을 탐색한다. 마지막으로 프레쉐거리를 이용하여 궤적 간 유사도를 계산하였다. 실제로 서울의 강남구 지역에 있는 500대의 차량 GPS 궤적을 가지고 클러스터링 작업을 수행하였다. 또한, 실험을 통하여 격자분할 접근방식의 빠른 수행시간과 안정성을 보였다.