• 제목/요약/키워드: Swear Word Detection

검색결과 3건 처리시간 0.015초

영작문 자동평가를 위한 비속어 검출과 미등록어 분류 (Swear Word Detection and Unknown Word Classification for Automatic English Writing Assessment)

  • 이경호;김성권;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.381-388
    • /
    • 2014
  • 본 논문에서는 중 고등 수준 단문형 영어 작문시험의 자동채점 시스템을 위한 사전 미등록어 분류기 구현에 대해 다룬다. 영어 자동채점 과정에서 발생하는 사전 미등록어의 유형을 정의하고 각 유형에 대한 검출 방법에 대해 논의하였다. 또한 영작문 답안에서 나타날 수 있는 비속어의 유형을 정의하고 검출 방법에 대해 연구하였다. 영작문 자동평가 시스템의 모듈로서 비속어 검출 기능이 포함된 미등록어 분류기를 구현하였다. 미등록어 분류와 비속어 검출 방법에 대한 성능을 실제 시험 데이터에 적용하여 그 성능을 평가하였다.

실시간 채팅 환경에서 문장 분석을 이용한 대상자 및 비속어 검출 (Target and Swear Word Detection Using Sentence Analysis in Real-Time Chatting)

  • 염충석;장준영;장유환;김현철;박희민
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.83-87
    • /
    • 2021
  • By the increase of internet usage, communicating online became an everyday thing. Thereby various people have experienced profanity by anonymous users. Nowadays lots of studies tried to solve this problem using artificial intelligence, but most of the solutions were for non-real time situations. In this paper, we propose a Telegram plugin that detects swear words using word2vec, and an algorithm to find the target of the sentence. We vectorized the input sentence to find connections with other similar words, then inputted the value to the pre-trained CNN (Convolutional Neural Network) model to detect any swears. For target recognition we proposed a sequential algorithm based on KoNLPY.

딥러닝 기반 욕설 탐지 (Swear Word Detection through Convolutional Neural Network)

  • 김유민;강효빈;한수현;정희용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.685-686
    • /
    • 2021
  • 개인의 소셜미디어 활동이 활발해지면서 익명성을 악용하여 타인에게 욕설을 주저없이 해버리는 사용자가 늘고 있다. 본 연구는 욕설이 난무하는 채팅창에서 욕설 데이터를 크롤링하여 데이터셋을 구축하여 컨볼루션 네트워크로 학습시켰을 때 욕설을 탐지하고, 전체 문장에서 그 탐지한 욕설의 위치를 파악하여 블러링 처리를 할 수 있는지를 확인하는 것을 목적으로 한다. 전처리 작업으로 한글과 공백을 제외하고 형태소 단위로 토큰화한 후 불용어를 제거해서 패딩처리를 하였다. 학습 모델로는 1차원 컨볼루션을 사용하여 수집한 데이터의 80%를 훈련에 사용하고 나머지 20%를 테스트에 사용하였다. 키워드를 이용한 단순 분류 모델과 비교하였을 때, 본 연구에서 이용한 모델이 약 14% 정확도가 향상된 것을 확인할 수 있었다. 테스트에서 전체 문장에서 욕설이 포함되었을 때 욕설과 그 위치 정보를 잘 획득하는 것도 확인할 수 있었다.