• Title/Summary/Keyword: Sway Reduction

Search Result 24, Processing Time 0.023 seconds

Nonlinear response of stiffened triceratops under impact and non-impact waves

  • Chandrasekaran, Srinivasan;Nassery, Jamshed
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.179-193
    • /
    • 2017
  • Dynamic response analysis of offshore triceratops with stiffened buoyant legs under impact and non-impact waves is presented. Triceratops is relatively new-generation complaint platform being explored in the recent past for its suitability in ultra-deep waters. Buoyant legs support the deck through ball joints, which partially isolate the deck by not transferring rotation from legs to the deck. Buoyant legs are interconnected using equally spaced stiffeners, inducing more integral action in dispersing the encountered wave loads. Two typical nonlinear waves under very high sea state are used to simulate impact and non-impact waves. Parameters of JONSWAP spectrum are chosen to produce waves with high vertical and horizontal asymmetries. Impact waves are simulated by steep, front asymmetric waves while non-impact waves are simulated using Stokes nonlinear irregular waves. Based on the numerical analyses presented, it is seen that the platform experiences both steady state (springing) and transient response (ringing) of high amplitudes. Response of the deck shows significant reduction in rotational degrees-of-freedom due to isolation offered by ball joints. Weak-asymmetric waves, resulting in non-impact waves cause steady state response. Beat phenomenon is noticed in almost all degrees-of-freedom but values in sway, roll and yaw are considerably low as angle of incidence is zero degrees. Impact waves cause response in higher frequencies; bursting nature of pitch response is a clear manifestation of the effect of impact waves on buoyant legs. Non-impact waves cause response similar to that of a beating phenomenon in all active degrees-of-freedom, which otherwise would not be present under normal loading. Power spectral density plots show energy content of response for a wide bandwidth of frequencies, indicating an alarming behaviour apart from being highly nonlinear. Heave, being one of the stiff degrees-of-freedom is triggered under non-impact waves, which resulted in tether tension variation under non-impact waves as well. Reduced deck response aids functional requirements of triceratops even under impact and non-impact waves. Stiffened group of buoyant legs enable a monolithic behaviour, enhancing stiffness in vertical plane.

An Analytical Study on Semi-Rigid Connections of 20-Story Braced Steel Structures (20층 가새 철골구조물의 반강접 접합부에 관한 해석적 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.1-8
    • /
    • 2000
  • In this study, the effect of semi-rigid connections on the structural behavior of 20-story braced steel structure has been investigated utilizing the second-order elastic structural analysis program in which nonlinear behavior of beam-column connections and geometric nonlinearity have been considered. Global effects such as P-delta effect and sway at the top have been studied, as well as distribution of member force and combined stress in structural members as local effects. When the structure subjected to horizontal load and vertical load is equipped with lateral-load resisting system such as braces, replacement of shear connection with semi-rigid connection has not caused any problem in P-delta effect and top lateral displacement. Distribution of member forces resulted in reduction in member size for economic structural design.

  • PDF

A Study on Tail Vibration Reduction for the Next Generation High Speed EMU (차세대 분산형 고속열차의 후미진동 저감에 관한 연구)

  • Jeon, Chang-Sung;Kim, Young-Guk;Kim, Seok-Won;Kim, Sang-Soo;Choi, Sung-Hoon;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.543-549
    • /
    • 2012
  • This study describes the tail vibration reduction for the next generation high speed EMU(HEMU-430X). The model of 6 cars was generated and the calculation was performed using VAMPIRE(railway vehicle dynamic software). In view of ride characteristics, HEMU-430X was expected to sway at the tail because of the yaw damper direction. The lateral acceleration of vehicle body exceeded the criteria because of hunting. To reduce this hunting motion, some methods such as wheel profile change, the change of damping coefficient for the 2nd lateral damper, the damping coefficient change of yaw damper were tested, but had little effect. Finally, the yaw damper direction was changed and the tail vibration disappeared. In real running test, the tail vibration appeared at the speed of 150km/h and the yaw damper direction change made the vehicle stable at the speed of 300km/h. The maximum test speed of HEMU-430X is 430km/h. If the tail vibration appears at higher speed, some other methods in this study may be considered to reduce it.

The Long-Term Effects of High-Frequency Transcutaneous Electrical Nerve Stimulation(TENS) on the Lower Limb Spasticity and the Balance in the Chronic Stroke Patients (장기간 고빈도 경피신경전기자극이 뇌졸중 환자의 하지 경직 및 균형에 미치는 영향)

  • In, Tae-Sung;Cho, Hwi-Young;Lee, Sun-Hyun;Lee, Dong-Yeop;Lee, Jae-Kuck;Song, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1740-1748
    • /
    • 2011
  • The purpose of this study was to investigate effects of the long-term high-frequency transcutaneous electrical nerve stimulation(TENS) on the spasticity and the balance in chronic stroke patients. Twenty-six subjects with spasticity over lower limbs were allocated randomly into two groups under standard rehabilitation: (1) TENS group, (2) placebo-TENS group. TENS stimulation was applied on the both the gastrocnemius for 30 minutes, 5 days a week for 4 weeks(100 Hz, 0.25 ms, 2 times sensory threshold). The Modified Ashworth Scale(MAS) and Hand-held manual muscle tester were used to assess the ankle plantarflexor spasticity. Balance function under three conditions was measured by using force-plate and the amount of postural sway was assessed; in (1) the condition of standing with eyes opened, (2) with eyes closed and (3) the condition of standing on unstable surface with eyes opened. Both groups showed significant improvement in spasticity and balance function after treatment for 4 weeks(p<.05). Especially, TENS group showed a significant reduction of spasticity compared to placebo-TENS group(p<.05). These results suggested that additional stimulation of a long-term high-frequency TENS to standard rehabilitation induced an improved balance function and a spasticity reduction. The long-term application of high-frequency TENS will be an effective intervention for reducing spasticity and increasing balance ability in the chronic stroke patients.