• Title/Summary/Keyword: Suweon 19

Search Result 74, Processing Time 0.026 seconds

Mineral Content and Nitrate-N of Oats, and Soil Characteristics as Affected by Different Types and N Rates of Liquid Manure (액상분뇨의 종류 및 N 시용량이 연맥의 무기물 함량, 질산태질소 및 토양특성에 미치는 영향)

  • Shin, D.E.;Kim, D.A.;Seo, S.;Lee, J.K.;Chung, E.S.;Shin, J.S.;Kim, W.H.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.3
    • /
    • pp.203-210
    • /
    • 1999
  • Of all the nutrients in liquid manure, N has the greatest potential both for the environment and for increasing forage yields. This experiment was carried out to determine the effect of different types and N rates of liquid manure on mineral content and nitrate-N of oats(Avena sativa L.), soil chemical characteristics in Suweon. Seven treatments consisting of chemical fertilizer $120kg\;N\;ha^{-1}$, liquid cattle manure 120, 240 and $360kg\;N\;ha^{-1}$, liquid swine manure 120, 240 and $360kg\;N\;ha^{-1}$ were arranged in a randomized complete block design with three replications. Compared with the plot of chemical fertilizer, increasing liquid manure N rates increased mineral contents of oats. Nitrate-N contents of oats were ranged from 1,881 to $2,605mg\;kg^{-1}$ in all treatments, which was orderly ranked as chemical fertilizer>liquid cattle manure $360kg\;N\;ha^{-1}$> liquid swine manure $240kg\;N\;ha^{-1}$. Contents of exchangeable cation of the soil were appeared to be higher with increasing liquid manure N rates. Amount of total-N and inorganic-N in soil affected by increasing liquid manure N rates, and there was the highest at liquid swine manure $360kg\;N\;ha^{-1}$ among the treatments. Nitrate-N concentration in infiltration water was not remarkably variable during the experimental period. Based on the results of this experiment, it is suggested that the amount of nitrogen in soil was orderly ranked as liquid swine manure $360kg\;N\;ha^{-1}$, followed by liquid swine manure $240kg\;N\;ha^{-1}$.

  • PDF

Seeding Rate and Planting Date Effects on Forage Performance and Quality of Winter Rye (호밀의 사초특성, 수량 및 품질에 미치는 파종량 및 파종기의 영향)

  • Park, H.S.;Kim, D.A.;Kim, J.D.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.2
    • /
    • pp.105-114
    • /
    • 1999
  • This experiment was carried out to determine seeding rate and planting date effects on the forage performance and quality of winter rye(Secale cereale L.) at Suweon in 1997 and 1998. The experiment was arranged in a spilt plot design with three replications. Main plots consisted of three seeding rates; 100, 150, and 200kg/ha. Sub-plots consisted of four planting dates; 5 September, 20 September, 5 October and 20 October. The first heading date of rye was not strongly influenced by planting dates. On a day basis, a 1:15 ratio was existed between heading and planting dates of rye, as a 1-day delay in spring heading date for each 15-day delay in fall planting date. Dry matter content of rye for a seeding rate of 200kg/ha was the lowest of 13.6%, and that for the planting dates was decreased to 15.2, 14.2, 14.3, and 13.8% with delayed seeding (P<0.05). There was an interaction between seeding rate and planting date in dry matter content of rye(P<0.01). Acid detergent fiber (ADF) percentage of rye for the seeding rates was not significant and that for the planting dates was decreased to 32.1, 31.6, 31.6, and 29.3%, as the planting was delayed(P<0.05). There was an interaction between seeding rate and planting date for ADF. Effect of seeding rate and planting date on neutral detergent fiber(NDF) of rye was similar to the observations made on ADF. Crude protein content of rye for the seeding rates was not significant, but that for the planting dates was increased to 17.3, 17.7, 18.2, and 18.9%, as the planting was delayed(P<0.05). In vitro dry matter digestibility(IVDMD) of rye for the seeding rates was not significant, but that for the planting dates was increased to 77.5, 80.6, 80.9, and 80.9%, as the planting was delayed(P<0.05). Dry matter yield of rye for a seeding rate of 100 kg/ha was the highest of 9,059 kg/ha, and that for a seeding rate of 200 kg/ha was the lowest of 7,647 kg/ha(P<0.01). In this experiment, the highest forage yield(8,945 kg/ha) was obtained when planting was completed by early October(5 October), with yield decreased as planting was delayed until 20 October (7,249 kg/ha)(P<0.01). This trend was also observed for the crude protein(CP) and in vitro digestible dry matter(IVDDM) yields of rye. A significant interaction between seeding rate and planting date for the dry matter yield was occurred(P<0.01). Based on the results of this experiment, it appears that the forage dry matter yield of rye could be enhanced by sowing from 20 September to 5 October under upland condition in the middle plain area of Korea. The seeding rates from 100 to 150 kg/ha and that of 200 kg/ha would be suitable for the early-fall and late fall sowing, respectively.

  • PDF

Bacterial Blight Resistance Genes Pyramided in Mid-Late Maturing Rice Cultivar 'Sinjinbaek' with High Grain Quality (벼흰잎마름병 저항성 유전자 집적 고품질 중만생 벼 '신진백')

  • Park, Hyun-Su;Kim, Ki-Young;Baek, Man-Kee;Cho, Young-Chan;Kim, Bo-Kyeong;Nam, Jeong-Kwon;Shin, Woon-Chul;Kim, Woo-Jae;Ko, Jong-Cheol;Kim, Jeong-Ju;Jeong, Jong-Min;Jeung, Ji-Ung;Lee, Keon-Mi;Park, Seul-Gi;Lee, Chang-Min;Kim, Choon-Song;Suh, Jung-Pil;Lee, Jeom-Ho
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.263-276
    • /
    • 2019
  • 'Sinjinbaek' is a bacterial blight (BB)-resistant, mid-late maturing rice cultivar with high grain quality. To diversify the resistance genes and enhance the resistance of Korean rice cultivars against BB, 'Sinjinbaek' was developed from a cross between 'Iksan493' (cultivar name 'Jinbaek') and the F1 cross between 'Hopum' and 'HR24670-9-2-1' ('HR24670'). 'Jinbaek' is a BB-resistant cultivar with two BB resistance genes, Xa3 and xa5. 'Hopum' is a high grain quality cultivar with the Xa3 resistance gene. 'HR24670' is a near-isogenic line that carries the Xa21 gene, a resistance gene inherited from a wild rice species O. longistaminata, in the genetic background of japonica elite rice line 'Suweon345'. 'Sinjinbaek' was selected through the pedigree method, yield trials, and local adaptability tests. Using bioassay for BB races and DNA markers for resistance genes, three resistance genes, Xa3, xa5, and Xa21, were pyramided in the 'Sinjinbaek' cultivar. 'Sinjinbaek' exhibited high-level and broad-spectrum resistance against BB, including the K3a race, the most virulent race in Korea. 'Sinjinbaek' is a mid-late maturing rice cultivar tolerant to lodging. It has multiple disease resistance against BB, rice blast, and stripe virus. The yield of 'Sinjinbaek' was similar to that of 'Nampyeong'. 'Sinjinbaek' showed excellent grain appearance, good taste of cooked rice, and enhanced milling performance, and we concluded that it could contribute to improving the quality of BB-resistant cultivars. 'Sinjinbaek' was successfully introgressed with the Xa21 gene without the linkage drag negatively affecting its agronomic characteristics. 'Sinjinbaek' improved the resistance of Korean rice cultivars against BB by introgression of a new resistance gene, Xa21, as well as by pyramiding three resistance genes, Xa3, xa5, and Xa21. 'Sinjinbaek' would be suitable for the cultivation in BB-prone areas since it has been used in breeding programs for enhancing plants' resistance to BB (Registration No. 7273).

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF