• 제목/요약/키워드: Sustained release microcapsules

검색결과 20건 처리시간 0.023초

Studies on the Development for Sustained Release Preparation (II):Preparation and Evaluation of Eudragit Microcapsules of Sodium Naproxen

  • Shin, Sang-Chul;Lee, Keong-Ran
    • Archives of Pharmacal Research
    • /
    • 제16권1호
    • /
    • pp.50-56
    • /
    • 1993
  • The microencapsulation of sodium naproxen with Eudragit. RS was studied by coacrtvation/phase separation process using Span 80 in mineral oil/acetone system. Various factors which affect the mciroencapsulation, e.g., stirring speed, and surfactant concentraction, Eudagit RS concentration and loading drug amounts were examined. For the evaluation of the prepared microcapsules, release rate, particle size distribution and surface appearance as well as in vivo test were carried out. The addition of n-hexane and freezing of microcapsules accelerated the hardening of microcapsules. The optimum concentration of Span 80 ti prepare the smallest microcapsules was the same value with the CMC of Span 80 in solvent system. When 1.5% (w/w) Span 80 was used, the smallest microcapsules were formed $(30.02\pm5.05\mu$ in diameter) belonging to the powder category showing smooth, round and uniform surface. The release of sodium naproxen was retarded by microencapsulation with Eudragit RS. The Eudragit RS microcapsules showed significantly increased AUC and MRT and deceased Cl/F in rabbits.

  • PDF

Polyamide Microcapsule의 성질과 서방성 (Sustained Drug Release of Polyamide Microcapsules)

  • 김계용;김진홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제8권2호
    • /
    • pp.135-144
    • /
    • 1987
  • Polyamide microcapsules were designed for a sustained drug release. As a model, riboflavin was e no apsulated in polyamide microcapsules. Polyamide microcapsules were prepared from thiamines and acid bichlorides by the interfacial polycondensation reaction. The diamines used in ttlis works were ethylenediamine and 1, 6-hexamethylenediamine. Sebacoylchloride and teruphthaloylchloride were employed as acid bichlorides. The following parameters were studied; the release of several kinds of polyamide microcapsules , the various concentrations of diamines and acid dichlorides ; the various concentrations of surfactants : the various pH range of sink solution during the dissolution test. The release amount of riboflavin from aromatic polyamide micrcapsule was higher than that of aliphatic polyamide microcapsule The release rate of riboflavin from the polyamide microcapsule was decreased with increase of concentration of thiamines, arid dichlorides and surfactants which is used for preparing polyamide microcapsule. Release riboflavin from polyamide microcapsule was lower at pH 7 than pH 2 in sink-solution for dissolution test.

  • PDF

Eudragit $RS^{\circledR}$를 이용한 지속 방출형 아스피린 마이크로캅셀의 제조 및 평가 (Preparation and Evaluation of Sustained Release Aspirin Microcapsules Using Eudragit $RS^{\circledR}$ Polymer)

  • 전인구;신동원
    • 약학회지
    • /
    • 제32권1호
    • /
    • pp.26-39
    • /
    • 1988
  • Eudragit $RS^{\circledR}$ polymer was used as a wall material for the microencapsulation of aspirin by a phase separation method from chloroform-cyclohexane system with 5% polyisobutylene (PIB) in cyclohexane, and microcapsules obtained were evaluated by particle size analysis, scanning electron microscopy (SEM), drug release and drug stability test. With PIB as a coacervation inducing agent, smooth and tight microcapsules with less aggregation were obtained. Below 1 : 0.3 core-wall ratio, it was possible to coat individual particle. Variation of production conditions showed that increasing the proportion of wall material, particle size and wall thickness of microcapsules and the concentration of paraffin wax in cyclohexane as a sealant sustained drug release rates effectively. SEM confirmed that larger microcapsules after drug release did not rupture into smaller particles but contained a few small pores on the surface. Aspirin release from Eudragit $RS^{\circledR}$ coated microcapsules was independent of the pH of medium, and the mechanism of drug release from non-sealed and sealed microcapsules appeared to fit Higuchi matrix model kinetics. Aspirin in the mixture of aspirin microcapsules and sodium bicarbonate was by far more stable than that in the mixture of pure aspirin and sodium bicarbonate.

  • PDF

Effects of Protective Colloids on the Formation of Polyurea Microcapsules

  • Lee, Eung-Min;Kim, Hea-In;Park, Soo-Min
    • 한국염색가공학회지
    • /
    • 제19권5호
    • /
    • pp.30-36
    • /
    • 2007
  • Cypermethrin-containing polyurea microcapsules were prepared by interfacial polymerization using aromatic 2,4-toluene diisocyanate(TDI) and Ethylene diamine(EDA) as wall forming materials. The effects of the protective colloids of polyvinylalcohol(PVA) and gelatin were investigated through experimentation. The mean size of the polyurea microcapsules was smaller and the surface morphology of the PVA was much smoother than gelatin. In addition the release behavior was much more controlled and better sustained. As the concentration of protective colloid increased, the wall membrane of the polyurea microcapsules became more stable, the thermal stability of the wall membrane increased, the mean particle size became smaller, and the particle distribution was more uniform. The release behavior of the core material changed according to the concentration. As the gelatin concentration was increased, a more controlled and sustained release behavior was observed. However, in the case of PVA, the increase of PVA concentration lead to a more rapid release rate.

지속 방출형 염산에탐부톨 마이크로캅셀의 제조에 있어서 스테아린산알루미늄의 효과 (Effects of Aluminum Tristearate in the Preparation of Sustained Release Ethambutol Hydrochloride Microcapsules)

  • 유봉신
    • Journal of Pharmaceutical Investigation
    • /
    • 제18권4호
    • /
    • pp.175-180
    • /
    • 1988
  • The role and effect of aluminum tristearate in microencapsulation were investigated based on the dispersion system of ethambutol hydrochloride in acetone-liquid paraffin. Eudragit RS was used as a wall-forming material. Eudragit RS microcapsules prepared using aluminum tristearate were uniform, free-flowing particles. The phase diagram of ethambutol hydrochloride-Eudragit RS-aluminum tristearate indicated that spherical microcapsules ranging from 250 to 1400 ${\mu}m$ in diameter could be prepared only in a very limited region. Instrumental analysis using an energy dispersive-type X-ray microanalyser and a scanning electron microscope showed that aluminum tristearate was localized near the surface of microcapsules. From these results, it was presumed that aluminum tristearate reduced the phase tension between Eudragit microcapsules and liquid paraffin. The dissolution rates of ethambutol hydrochloride from Eudragit RS microcapsules were consideraly lower than those from ethambutol hydrochloride powders and decreased as the amount of aluminum tristearate decreased.

  • PDF

염산지페프를 마이크로캅셀에 관한 생물약제학적 연구 (Biopharmaceutical Studies on Zipeprol Dihydrochloride Microcapsules)

  • 용재익;김옥남
    • Journal of Pharmaceutical Investigation
    • /
    • 제18권4호
    • /
    • pp.187-195
    • /
    • 1988
  • Poorly permeable $Eudragit^{\circledR}$ RS 100 polymer was used as a wall material for the microencapsulation of zipeprol dihydrochloride by a phase separation method from chloroform-cyclohexane system with 5% polyisobutylene in cyclohexane, and microcapsules obtained were evaluated in vitro by particle size analysis, scanning electron microscopy, drug release test and in vivo bioavailability test in rats. The mechanism of drug release from microcapsules appeared to fit Higuchi matrix model kinetics. The area under the first moment of plasma concentration-time curve of the microcapsules obtained was considerably increased (p<0.05) as compared with that from zipeprol dihydrochloride oral solution. Therefore, it may be suggested that $Eudragit^{\cirledR}$ RS 100 coated zipeprol dihydrochloride microcapsules can be used as a sustained release medication.

  • PDF

Water-insoluble, Whey Protein-based Microcapsules for Controlled Core Release Application

  • Lee, Sung-Je
    • Journal of Dairy Science and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.115-123
    • /
    • 2005
  • Microcapsules consisting of natural, biodegradable polymers for controlled and/or sustained core release applications are needed. Physicochemical properties of whey proteins suggest that they may be suitable wall materials in developing such microcapsules. The objectives of the research were to develop water-insoluble, whey protein-based microcapsules containing a model water-soluble drug using a chemical cross-linking agent, glutaraldehyde, and to investigate core release from these capsules at simulated physiological conditions. A model water soluble drug, theophylline, was suspended in whey protein isolate (WPI) solution. The suspension was dispersed in a mixture of dichloromethane and hexane containing 1% biomedical polyurethane. Protein matrices were cross-linked with 7.5-30 ml of glutaraldehyde-saturated toluene (GAST) for 1-3 hr. Microcapsules were harvested, washed, dried and analyzed for core retention, microstructure, and core release in enzyme-free simulated gastric fluid (SGF) and simulated intestinal fluid(SIF) at $37^{\circ}C$. A method consisting of double emulsification and heat gelation was also developed to prepare water-insoluble, whey protein-based microcapsules containing anhydrous milkfat (AMF) as a model apolar core. AMF was emulsified into WPI solution (15${\sim}$30%, pH 4.5-7.2) at a proportion of 25${\sim}$50%(w/w, on dry basis). The oil-in-water emulsion was then added and dispersed into corn oil ($50^{\circ}C$) to form an O/W/O double emulsion and then heated at $85^{\circ}C$ for 20 min for gelation of whey protein wall matrix. Effects of emulsion composition and pH on core retention, microstructure, and water-solubility of microcapsules were determined. Overall results suggest that whey proteins can be used in developing microcapsules for controlled and sustained core release applications.

  • PDF

고분자구조제어에 의한 microcapsule의 감성기능발현(II) -화학구조에 따른 polyurethane microcapsule의 특성- (Revelation of the Susceptibility of Microcapsule by the Control of Polymer Structure (II) -Preparation of polyurethane microcapsules with different chemical structures-)

  • Hong, Ki-Jeong;Park, Soo-Min
    • 한국염색가공학회지
    • /
    • 제9권5호
    • /
    • pp.63-74
    • /
    • 1997
  • Polyurethane microcapsules were synthesized by interfacial polymerization in an aqueous poly(ethylene glycol) dispersion with ethylenediamine as chain extender of toluene diisocyanate in perfume oil using poly(vinyl alcohol) as the stabilizing agent. The effect of chemical structure on the average particle size and distributions, morphologies, and thermal properties to design microcapsules for the sustained release system was investigated. It came to be known that polyurethane microcapsules with ethylene diamine as chain extender had a rounder, more permeable and controlled release membranes. And the release test of polyurethane microcapsules with different soft segment content was done to certify the effect of long methylene chain. According to the higher molecular weight of polyether polyol, the release rate of microencapsulated disperse dye molecular was faster.

  • PDF

케토프로펜-${\beta}$-시클로덱스트린 고체분산체의 마이크로캅셀화 및 제어 방출 (Preparation and Controlled Release of Microcapsules Containing $Ketoprofen-{\beta}-Cyclodextrin$ Solid Dispersion)

  • 전인구;박정화
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권1호
    • /
    • pp.33-40
    • /
    • 1992
  • This study was aimed to control the release characteristics of ketoprofen by microencapsulating $ketoprofen-{\beta}-cyclodextrin\;(KF-{\beta}-CyD)$ solid dispersion with Eudragit RS by the phase separation method using a nonaqueous vehicle. KF alone was also microencapsulated with Eudragit RS by the evaporation process in water phase. The results obtained showed that it was not possible to microencapsulate KF alone by phase separation in a chloroform-cyclohexane system while it was easy to microencapsulate $(KF-{\beta}-CyD)$ solid dispersion system. For the microcapsules, the release test was performed in the first fluid (pH 1.2) and the second fluid (pH 6.8) of K.P.V disintegration medium at $37^{\circ}C$. The release of KF from $(KF-{\beta}-CyD)$ solid dispersion microcapsules (1:1 core wall ratio) was more sustained than that from KF microcapsules, and followed zero-order kinetics. Especially, solid dispersion microcapsules showed pH-independent release patterns with higher wall to core ratio (1:1 w/w).

  • PDF

서방성 $Cephalexin-Eudragit^{\circledR}$ 마이크로캅셀의 생물약제학적 평가 (Biopharmaceutical Evaluation of Sustained-Release $Eudragit^{\circledR}$ Microcapsules Containing Cephalexin)

  • 한건;김광덕;정연복;지웅길;김신근
    • Journal of Pharmaceutical Investigation
    • /
    • 제23권2호
    • /
    • pp.103-110
    • /
    • 1993
  • Microcapsules(Mc) of cephalexin (CEPH), using Eudragit RS, RL, L, S and polyethylene glycol 1540, were evaluated biopharmaceutically. The area under the curve of CEPH-Eudragit RS/RL Mc administered orally once was larger than that of cephalexin powder twice every 6 hrs. Controlledrelease effectiveness and the absorption rate effectiveness, two important parameters of Vallner's method, of CEPH-Eudragit RS/RL Mc indicate that these Mc can be good sustained-release preparations. And a simple pharmacokinetic model is introduced which allows the gastric emptying and intestinal-transit rates of a drug itself and a solid-state drug contained in Mc. Decreasing $K_r$, without change in $K_a$, showed that the rate-limiting step of absorption moved from absorption step to releasestep.

  • PDF