• Title/Summary/Keyword: Sustainable Assessment System

Search Result 243, Processing Time 0.026 seconds

Analysis and Management of Potential Development Area Using Factor of Change from Forest to Build-up (산림의 시가지 변화요인을 통한 잠재개발지 분석 및 관리방안)

  • LEE, Ji-Yeon;LIM, No-Ol;LEE, Sung-Joo;CHO, Hyo-Jin;SUNG, Hyun-Chan;JEON, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.72-87
    • /
    • 2022
  • For the sustainable development and conservation of the national land, planned development and efficient environmental conservation must be accompanied. To this end, it is possible to induce development and conservation to harmonize by deriving factors affecting development through analysis of previously developed areas and applying appropriate management measures to areas with high development pressure. In this study, the relationship between the area where the land cover changed from forest to urbanization and various social, geographical, and restrictive factors was implemented in a regression formula through logistic regression analysis, and potential development sites were analyzed for Yongin City. The factor that has the greatest impact on the analysis of potential development area is the restrict factors such as Green Belt and protected areas, and the factor with the least impact is the population density. About 148km2(52%) of Yongin-si's forests were analyzed as potential development area. Among the potential development sites, the area with excellent environmental value as a protected area and 1st grade on the Environment Conservation Value Assessment Map was derived as about 13km2. Protected areas with high development potential were riparian buffer zone and special measurement area, and areas with excellent natural scenery and river were preferred as development areas. Protected areas allow certain actions to protect individual property rights. However, there is no clear permit criteria, and the environmental impact of permits is not understood. This is identified as a factor that prevents protected areas from functioning properly. Therefore, it needs to be managed through clear exception permit criteria and environmental impact monitoring.

Management of plant genetic resources at RDA in line with Nagoya Protocol

  • Yoon, Moon-Sup;Na, Young-Wang;Ko, Ho-Cheol;Lee, Sun-Young;Ma, Kyung-Ho;Baek, Hyung-Jin;Lee, Su-Kyeung;Lee, Sok-Young
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.51-52
    • /
    • 2017
  • "Plant genetic resources for food and agriculture" means any genetic material of plant origin of actual or potential value for food and agriculture. "Genetic material" means any material of plant origin, including reproductive and vegetative propagating material, containing functional units of heredity. (Internal Treaty on Plant Genetic Resources for Food and Agriculture, ITPGRFA). The "Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization (ABS) to the Convention on Biological Diversity (shortly Nagoya Protocol)" is a supplementary agreement to the Convention on Biological Diversity. It provides a transparent legal framework for the effective implementation of one of the three objectives of the CBD: the fair and equitable sharing of benefits arising out of the utilization of genetic resources. The Nagoya Protocol on ABS was adopted on 29 October 2010 in Nagoya, Japan and entered into force on 12 October 2014, 90 days after the deposit of the fiftieth instrument of ratification. Its objective is the fair and equitable sharing of benefits arising from the utilization of genetic resources, thereby contributing to the conservation and sustainable use of biodiversity. The Nagoya Protocol will create greater legal certainty and transparency for both providers and users of genetic resources by; (a) Establishing more predictable conditions for access to genetic resources and (b) Helping to ensure benefit-sharing when genetic resources leave the country providing the genetic resources. By helping to ensure benefit-sharing, the Nagoya Protocol creates incentives to conserve and sustainably use genetic resources, and therefore enhances the contribution of biodiversity to development and human well-being. The Nagoya Protocol's success will require effective implementation at the domestic level. A range of tools and mechanisms provided by the Nagoya Protocol will assist contracting Parties including; (a) Establishing national focal points (NFPs) and competent national authorities (CNAs) to serve as contact points for information, grant access or cooperate on issues of compliance, (b) An Access and Benefit-sharing Clearing-House to share information, such as domestic regulatory ABS requirements or information on NFPs and CNAs, (c) Capacity-building to support key aspects of implementation. Based on a country's self-assessment of national needs and priorities, this can include capacity to develop domestic ABS legislation to implement the Nagoya Protocol, to negotiate MAT and to develop in-country research capability and institutions, (d) Awareness-raising, (e) Technology Transfer, (f) Targeted financial support for capacity-building and development initiatives through the Nagoya Protocol's financial mechanism, the Global Environment Facility (GEF) (Nagoya Protocol). The Rural Development Administration (RDA) leading to conduct management agricultural genetic resources following the 'ACT ON THE PRESERVATION, MANAGEMENT AND USE OF AGRO-FISHERY BIO-RESOURCES' established on 2007. According to $2^{nd}$ clause of Article 14 (Designation, Operation, etc. of Agencies Responsible for Agro-Fishery Bioresources) of the act, the duties endowed are, (a) Matters concerning securing, preservation, management, and use of agro-fishery bioresources; (b) Establishment of an integrated information system for agro-fishery bioresources; (c) Matters concerning medium and long-term preservation of, and research on, agro-fishery bioresources; (d) Matters concerning international cooperation for agro-fishery bioresources and other relevant matters. As the result the RDA manage about 246,000 accessions of plant genetic resources under the national management system at the end of 2016.

  • PDF

Technical and Economical Assessment of Adsorption and Reverse Osmosis for Removal of Ammonia from Groundwater of Kathmandu, Nepal (네팔 카트만두 지하수에서 암모늄 제거를 위한 이온 교환 및 역삼투의 기술 및 경제 평가)

  • Kunwar, Pallavi;Ahn, Jaewuk;Baek, Youngbin;Yoon, Jeyong
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.174-182
    • /
    • 2020
  • The permissible limit of ammonia concentration in drinking water recommended by the World Health Organization (WHO) is 1.5 mg/L. However, in the case of groundwater in Kathmandu, Nepal, the concentration of ammonia fluctuates dramatically from 0 to 120 mg/L at different locations and groundwater depths (Chapagain et al., 2010). Such a high concentration of ammonia causes aesthetic problems in drinking water, such as bad taste and odor; hence, prior treatment is required. In Kathmandu, half of the population utilizes groundwater, which is also employed for drinking water, but owing to a lack of knowledge of household water filters, residents of Kathmandu tend to depend greatly on commercially available jar water than on the installation of a proper household filtration method. Thus, in our study, we employed adsorption and reverse osmosis (RO) as two of the most viable decentralized/household treatment options to address the issue of high contamination of ammonia in drinking water. We evaluated their performances from technical and the economic perspectives using synthetically prepared groundwater at varying ammonia concentrations (50 mg/L and 15 mg/L). Consequently, it was found that adsorption via ion exchange (IE) resin was a comparatively better ammonia removal technology than RO, with 100% ammonia removal even after regeneration; the removal by RO was limited to up to 90%. Furthermore, our study suggests that IE is the most suitable ammonia removal technology for places with lower water consumption (< 50 L/day), whereas RO seemed to be a cost-effective technology for places with higher water consumption, where the daily water demand exceeds 50 L/day. Lastly, these assessments suggest that installing a suitable household treatment system would be more efficient and sustainable from both technical and economic points of view than purchasing commercially bottled water.