• Title/Summary/Keyword: Sustain circuit

Search Result 65, Processing Time 0.025 seconds

Measurement of wall charge characteristics for three-electrode AC PDP

  • Yoon, Sang-Jin;Yang, Hee-Chan;Kang, Seong-Ho;Ryu, Jae-Hwa;Kang, Bong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.605-608
    • /
    • 2002
  • This paper proposes a real-time wall charge measurement circuit for three-electrode AC PDP. It includes a charge-compensation network, current-integrating capacitors, initializing switches, and an op-amp. With this equipment, we measure the wall charge variations for the effects of sustain voltage, sustain pulse width, sustain frequency, and neighboring cells.

  • PDF

A New Sustain Driving Method for AC PDP : Charge-Controlled Driving Method

  • Kim, Joon-Yub
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.292-296
    • /
    • 2002
  • A new sustain driving method for the AC PDP is presented. In this driving method, the voltage source is connected to a storage capacitor, this storage capacitor charges an intermediate capacitor through LC resonance, and the panel is charged from the intermediate capacitor indirectly. In this way, the current flowing into the AC PDP when the sustain discharge occurs is reduced because the current is indirectly supplied from a capacitor, a limited source of charge. Thus, the input power to the output luminance efficiency is improved. Since the voltage supplied to the storage capacitor is doubled through LC resonance, this method call drive an AC PDP with a voltage source of about half of the voltage necessary in the conventional driving methods. The experiments showed that this charge-controlled driving method could drive ail AC PDP with a voltage source of as low as 107V. Using a panel of the conventional structure, luminous efficiency of 1.28 lm/W was achieved.

A Highly Efficient AC-PDP Driver Featuring an Energy Recovery Function in Sustaining Mode Operation

  • Kang, Feel-Soon;Park, Sung-Jun;Kim, Cheul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.100-108
    • /
    • 2002
  • A simple sustain driver employing an energy recovery function is proposed as a highly efficient driver of a plasma display panel. The proposed driver uses dual resonance in the sustaining mode operation: a main resonance between an inductor and an external capacitor to produce alternative pulses and a sub-resonance between an inductor and a panel to recover the energy consumption by the capacitive displacement current of the PDP. The operational principle and design procedure of the proposed circuit are presented with theoretical analysis. The operation of the proposed sustain driver is verified through simulation and experiments based on a 7.5-inch-diagonal panel with a 200 KHz operating frequency.

High Performance AC-PDP Sustain Driver with Low switching Loss (낮은 스위칭 손실을 가지는 고성능 AC-PDP 구동 회로에 관한 연구)

  • Kang, Feel-Soon;Park, Sung-Jun;Park, Han-Woong;Kim, Cheul-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.50-56
    • /
    • 2002
  • When the plasma panel is used as a display, frequent discharging are made to occur by alternatively charging each side of the panel to a critical voltage, which causes repeated gas discharges to occur. In this paper, an efficient sustain driver is proposed to achieve a faster rise-time in order to be suitable to widely used ADS driving method. The proposed circuit increases an operational margin up to 20 % compared with conventional approaches improving the recovery efficiency regardless of the variation of panel capacitance. Thanks to the increased operational margin, the brightness decrease problem can be solved without a limitation to sustain pulse width. The principle of operation, and features are illustrated, and verified on a 7.5 inch diagonal panel at 200 kHz operating frequency - based on experimental prototype.

  • PDF

Wall Voltage Characteristics Simulated Using an Equivalent Circuit Model for AC POPs

  • Kim, Joon-Yub;Lim, Jong-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.317-320
    • /
    • 2003
  • As a convenient means for the characterization of the wall voltage and wall charge of AC PDPs during the sustain period, an equivalent circuit model for AC PDPs is presented. The equivalent circuit model for AC PDPs consists of capacitors and thyristors. The equivalent circuit model is based on the physical structure of the AC PDP and the I-V characteristic of the discharge space. This equivalent circuit model can be easily implemented in the standard simulators such as SPICE and can easily simulate the variation of the current, charge and voltage involved in AC PDPs as the supply voltage varies.

  • PDF

Implementation of the Negative Reset Waveform and Driving Circuit for High Speed Addressing in AC PDP (AC PDP에서 고속 어드레싱을 위한 네거티브 리셋 파형 및 구동회로의 구현)

  • Lim, Hyun-Muk;Lim, Seung-Beom;Lee, Jun-Young;Kang, Jung-Won;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.215-217
    • /
    • 2007
  • Recently, the demand for high definition TV is being increased by beginning of the digital broadcasting. The higher resolution of PDP is, the longer addressing time become, then, the sustain period for display image decreases. Because of the reason, dual-scan method which synchronously write information of an image on top and bottom of the screen is used for the high definition PDP. However, as the price competition of PDP becomes severe, we can`t avoid turning to a single-scan method which uses only a half of an expensive address IC. Accordingly, the sustain period becomes much shorter than prior method. In case of XGA level, it is impossible to display, eventually. In this paper, we are going to prove usefulness by realizing negative reset waveform and the driving circuit for high speed addressing.

  • PDF

Design And Implementation of a Novel Sustain Driver for Plasma Display Panel

  • Agarwal Pankaj;Kim Woo-Sup;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.403-405
    • /
    • 2006
  • Over the years, plasma display panel (PDP) manufacturers have impressed the flat panel display industry with yet another new product essentially having the merits of a larger screen size. Since larger size implies higher power ratings, voltage/current ratings of the power devices used have become a rising concern. Another important concern is the brightness of PDP, one way of increasing which is by operating the PDP at higher frequencies. In order to address the above issues, a transformer coupled sustain-driver for AC-PDP is proposed During the transition time, the two windings of the transformer greatly boost up the displacement current flowing through the panel capacitance and hence enable a fast inversion of the voltage polarity with practical values of resonant inductance. In the proposed topology, the resonant inductance can be increased by a factor of $(n+1)^2$ as compared to prior approaches. Increased inductance results in lower current stresses. Moreover, high frequency operation is possible by using higher value of n (turn ratio of the transformer). The operational principle and design procedure of the proposed circuit are presented with theoretical analysis. The validity of the proposed sustain driver is established through simulation and experimental results using a 42-in PDP

  • PDF

A Low-Profile DC-To-DC Converter for Sustain Driving Circuits of AC PDP Application Systems (저소비전력 PDP 구동을 위한 고효율 박형 전원회로 개발)

  • Lee S.W.;Choi B.C;Lee K.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.247-250
    • /
    • 2003
  • The current paper presents the design and implementation of a low-profile dc-to-dc converter developed as a power supply for the sustain driving: circuit inside large-area wall-mount ac PDP application systems. Details on the design and implementation of a 500 W prototype dc-to-dc converter, miniaturized within a 230 mm$\times$ 130 mm area with a thickness of 25 mm while still achieving a 95 $\%$ conversion efficiency, are presented to demonstrate the feasibility and application potentials of the proposed low-profile dc -to-dc converters.

  • PDF

A Low-Profile DC-To-DC Converter for Sustain Driving Circuits of AC PDP Application Systems

  • Lee, Sang-Won;Choi, Byung-Cho;Lee, Ki-Jo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.333-336
    • /
    • 2003
  • The current paper presents the design and implementation of a low-profile dc-to-dc converter developed as a power supply for the sustain driving circuit inside large-area wall-mount ac PDP application systems. Details on the design and implementation of a 500 W prototype dc-to-dc converter, miniaturized within a 230 $mm{\times}130$ mm area with a thickness of 25 mm while still achieving a 95 % conversion efficiency, are presented to demonstrate the feasibility and application potentials of the proposed low-profile dc-to-dc converter.

  • PDF

The PDS(Power Transfer Display Separation) method and implementation of SPIDER (Sustainer with Primary sided Integration of DC/DC converter and Energy Recovery circuit) for AC-PDP (AC-PDP를 위한 SPIDER(Sustainer with Primary sided Integration of DC/DC converter and Energy Recovery circuit)의 구현 및 PDS 구동법)

  • Shin, Yong-Saeng;Park, Jae-Sung;Hong, Sung-Soo;Han, Sang-Kyoo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.107-113
    • /
    • 2012
  • This paper proposes a PDS(Power Transfer Display separation) method for AC-PDP. The proposed PDS method can transfer power and perform an energy recovery by a power conversion circuit operates differently depending on the time. As a result, it uses less of components than conventional PDP power supply and sustain circuit use. Moreover, the manufacturing process can be streamlined. Therefore, the proposed method is suitable for low cost PDP module. To confirm the operation, validity and features of the proposed PDS method, experimental results from a prototype for 42-in diagonal PDP are presented.