• Title/Summary/Keyword: Suspension systems

Search Result 528, Processing Time 0.06 seconds

Design of Fault Tolerant Controller for Electromagnetic Supension System (자기부상시스템에서의 내고장성 제어기 설계)

  • Seong, Ho-Gyeong;Jo, Heung-Jae;Jeong, Seok-Yeong;Seong, So-Yeong
    • 연구논문집
    • /
    • s.30
    • /
    • pp.79-92
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a reliable output feedback control scheme for the electromagnetic suspension systems in the present of chopper, gap sensor and acceleration sensor failures. The designed controller is an extended version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the simulation and experimental results for proposed controller against chopper, gap sensor and acceleration sensor failures of electromagnetic suspension system.

  • PDF

Optimal Design of Vehicle Suspenion Systems Using Sensitivity Analysis (민감도 해석을 이용한 현가장치의 동역학적 최적설계)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.50-61
    • /
    • 1994
  • A method for performing dynamic design sensitivity analysis of vehicle suspension systems which have three dimensional closed-loop kinematic structure is presented. A recursive form of equations of motion for a MacPherson suspension system is derived as basis for sensitivity analysis. By directly differentiating the equations of motion with respect to design variables, sensitivity equations are obtained. The direct generalize for the application of multibody dynamic sensitivity analysis. Based on the proposed sensitivity analysis, optimal design of a MacPherson suspension system is carried out taking unsprung mass, spring and damping coefficients as design variables.

  • PDF

Adaptive LQG Control for Semi -Active Suspension Systems: Disturbance Rejection Capability

  • Sohn, Hyun-Chul;Hong, Kyung-Tae;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.5-47
    • /
    • 2001
  • In this paper. a road-adaptive LQG control for the semiactive Macpherson strut suspension system of hydraulic type is investigated. A new control oriented model, which incorporates the rotational motion of the unsprung mass, is introduced. A semi-active suspension controller adapting to road variations is proposed. First, based on the extended least squares estimation algorithm, a LQG controller adapting to the estimated road characteristics is designed. Through the computer simulations, the performance of the proposed semi-active suspension is compared with that of a non-adaptive one. The results show better control performance of the proposed system over the compared one.

  • PDF

Active Control Method of Automotive Suspension System

  • Seonghark Jeong;Kim, Jungha;Donghee Moon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.43.4-43
    • /
    • 2002
  • $\textbullet$ Introdution $\textbullet$ Robotic Suspension $\textbullet$ Vehicle Dynamics $\textbullet$ Result $\textbullet$ Conclusion

  • PDF

Fuzzy Controller Modeling for Electromagnetic Levitation Systems based on Clustering Algorithm (클러스터링에 기초한 자기부상시스템의 퍼지제어기 모델링)

  • Kim, Min-Soo;Byun, Yeun-Sub;Lee, Kwan-Sup
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.145-159
    • /
    • 2006
  • This paper describes the development of a clustering based fuzzy controller of an electromagnetic suspension vehicle using gain scheduling method and Kalman filter for a simplified single magnet system. Electromagnetic suspension vehicle systems are highly nonlinear and essentially unstable systems For achieving the levitation control of the DC electromagnetic suspension system, we considered a fuzzy system modeling method based on clustering algorithm which a set of input/output data is collected from the well defined Linear Quadratic Gaussian(LQG) controller. Simulation results show that the proposed clustering based fuzzy controller methodology robustly yields uniform performance with adequate gap response over the mass variation range.

  • PDF

Analysis and Optimization of Permanent Magnet Dimensions in Electrodynamic Suspension Systems

  • Hasanzadeh, Saeed;Rezaei, Hossein;Qiyassi, Ehsan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.307-314
    • /
    • 2018
  • In this paper, analytical modeling of lift and drag forces in permanent magnet electrodynamic suspension systems (PM EDSs) are presented. After studying the impacts of PM dimensions on the permanent magnetic field and developed lift force, it is indicated that there is an optimum PM length in a specified thickness for a maximum lift force. Therefore, the optimum PM length for achieving maximum lift force is obtained. Afterward, an objective design optimization is proposed to increase the lift force and to decrease the material cost of the system by using Genetic Algorithm. The results confirm that the required values of the lift force can be achieved; while, reducing the system material cost. Finite Element Analysis (FEA) and experimental tests are carried out to evaluate the effectiveness of the PM EDS system model and the proposed optimization method. Finally, a number of design guidelines are extracted.

Vibration Test of Truck with Air Suspension & Development of Korean Type Air Suspension (공기 현가장치를 장착한 화물차량의 진동측정 및 한국형 공기 현가장치 모듈 개발)

  • Woo, Jun-Seong;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Tae-Won;Kwon, Soon-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1215-1223
    • /
    • 2006
  • A leaf spring suspension has been widely used since it can carry big load and its simplicity. But one major drawback is the poor ride performance because of the friction in the system and the high stiffness coefficient. To overcome these, an air spring suspension can be used. The air spring suspension system can improve the ride of the heavy vehicle significantly and also it can adjust the height to the loading and unloading. The road tests for the truck with the leaf spring suspension and air spring suspension are performed to compare the ride quality of the two systems. To develop the air spring suspension system tailored to the target truck, chassis development procedure using CAE has been applied.

Wheelset Steering Angle of Railway Vehicle according to Primary Suspension Property (철도차량 1차현가 특성에 따른 윤축 조향각 성능 분석)

  • Hur, Hyun Moo;Ahn, Da Hoon;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.597-602
    • /
    • 2015
  • In this paper, we studied the steering performance of wheelset with primary suspension characteristics of railway vehicle. We carry out dynamic analysis and experimental study for the vehicle models which are different primary suspension characteristics. The steering angle of a vehicle model (Case 1) operating in domestic subway lines is insufficient compared with an objective steering angle for curved track. And the steering angle of a vehicle model (Case 2) with improved self-steering performance of wheelset is a little improved compare to previous vehicle model. But also Case 2 model is still insufficient compared with an objective steering angle and has its limit in steering performance. So to overcome this limit of steering performance of passive type railway vehicle, an active steering technology is being developed. In case of vehicle model with active steering system, the steering performance is improved remarkably compared to passive type vehicle model.

Fuzzy-sliding mode control of a full car semi-active suspension systems with MR dampers

  • Zheng, L.;Li, Y.N.;Baz, A.
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.261-277
    • /
    • 2009
  • A fuzzy-sliding mode controller is presented to control the dynamics of semi-active suspension systems of vehicles using magneto-rheological (MR) fluid dampers. A full car model is used to design and evaluate the performance of the proposed semi-active controlled suspension system. Four mixed mode MR dampers are designed, manufactured, and integrated with four independent sliding mode controllers. The siding mode controller is designed to decrease the energy consumption and maintain robustness. In order to overcome the chattering of the sliding mode controllers, a fuzzy logic control strategy is merged into the sliding mode controller. The proposed fuzzy-sliding mode controller is designed and fabricated. The performance of the semi-active suspensions is evaluated in both the time and frequency domains. The obtained results demonstrate that the proposed fuzzy-sliding mode controller can effectively suppress the vibration of vehicles and improve their ride comfort and handling stability. Furthermore, it is shown that the "chattering" of the sliding mode controller is smoothed when it is integrated with a fuzzy logic control strategy. Although the cost function of the fuzzy-sliding mode control is a slightly higher than that of a classical LQR controller, the control effectiveness and robustness are enhanced considerably.