• Title/Summary/Keyword: Suspension system

Search Result 1,486, Processing Time 0.03 seconds

Characteristics of Particle Separation in Suspension using an Ultrasonic Standing Wave

  • Shin, Beom-Soo;Danao, Mary-Grace C.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • Purpose: Particle separation in solution is one of important process in a unit operation as well as in an extract preparation for biosensors. Contrary to centrifuge-type of mesh-type filter, using an ultrasonic standing wave make the filtering process continuous and free from maintenance. It is needed to investigate the characteristics of particle movement in the ultrasonic standing wave field. Methods: Through the computer simulation the effects of major design and driving parameters on the alignment characteristics of particles were investigated, and a cylindrical chamber with up-stream flow type was devised using two circular-shape PZTs on both sides of the chamber, one for transmitting ultrasonic wave and the other for just reflecting it. Then, the system performance was experimentally investigated as well. Results: The speed of a particle to reach pressure-node plane increased as the acoustic pressure and size of particle increased. The maximum allowable up-stream flow rate could be calculated as well. As expected, exact numbers of pressure-node planes were well formed at specific locations according to the wavelength of ultrasonic wave. As the driving frequency of PZT got close to its resonance frequency, the bands of particles were observed clearer, which meant the particles were trapped into narrower space. Higher excitation voltages to the PZT produced a greater acoustic force with which to trap particles in the pressure-node planes, so that the particles gathered could move upwards without disturbing their alignments even at a higher inlet flow rate. Conclusions: This research showed the feasibility of particle separation in solution in the continuous way by an ultrasonic standing wave. Further study is needed to develop a device to collect or harvest those separated particles.

A Study on a Nonlinear Cable Finite Element (非線形 케이블 有限要素에 관한 硏究)

  • 장승필;박정일
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.93-101
    • /
    • 1989
  • A geometrically nonlinear cable finite element is presented to use in the static or dynamic modeling of offshore and onshore structures such as guyed tower, tension leg platform or mooring buoy, submarine cable, cable-stayed bridge, suspension bridge, cable roof and so on. The cable finite element is derived directly from the compatibility equations and flexibility matrix of elastic catenary cable theory for the arbitary plane loading and geome try. A general and virsatile computer program has been developed to perform the analyses of cable member itself or cable guyed or suspened structures, in which Newmark-$\beta$ method is used to obtain a time domain solution and Newton-Raphson iteration method is used to solve the nonlinear system of compatibility equations of cable and algebraic static or dynamic equations at each time step. The results from the static and dynamic analysis of a cable member by the computer program are summarized and presented.

  • PDF

Preparation of Hydrophilic Coating Film Using GPS(Glycidoxypropyl Trimethoxysilane) (GPS(Glycidoxypropyl Trimethoxysilane)을 이용한 친수성 코팅 필름의 제조)

  • Park, Jung Kook;Song, Ki Chang;Kang, Hyun Uk;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.735-740
    • /
    • 2002
  • In order to improve the anti-fogging property of polymer films, organic-inorganic hybrid coating solutions which have good hydrophilic property and transmission in the range of visible light were synthesized by the sol-gel method. The coating solutions were prepared by adding glycidoxypropyl trimethoxysilane(GPS) to a colloidal silica(15 nm) suspension(Ludox). GPS as silane coupling agent forms strong bonds to the colloidal silica and surrounding polymer matrix and links two different materials together. Solutions prepared by addition of GPS at the acidic condition resulted in coatings that were less prone to cracking, while those at the basic condition caused coatings with more cracking. These resulted in better hydrophilic property and transmission in the range of visible light for the solution prepared at the acidic condition(pH 2). Compared with coatings under acidic conditions, coatings prepared at basic conditions showed worse hydrophilic property and transmission in the range of visible light.

COMPARISON OF THE SEALING ABILITY OF VARIOUS RETROGRADE FILLING MAIERIALS (수종의 역충전 재료의 치근단 밀폐력 비교)

  • 황윤찬;강인철;황인남;오원만
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.379-386
    • /
    • 2001
  • This study was performed to evaluate the sealing ability of various retrograde filling materials by using bacterial penetration and dye penetration test. One hundred and forty extracted human teeth with single, straight canals and mature apiece were collected and used for this study. All canals were instrumented using an engine driven Ni-Ti file (ProFile). After removing 3mm from the apex of tooth, a standardized 3mm root end cavity was prepared using an ultrasonic instrument. The 70 teeth were randomly divided into 7 groups : 6 groups for retrograde filling using Super-EBA, ZOE, Chelon-Silver, IRM, ZPC and amalgam. The 7th group was used as a negative control. Nail varnish was applied to all external root surfaces to the level of the reseated root ends to prevent lateral microleakages. The specimens were then sterilized in an ethylene oxide sterilizer for 24 hours. 2 mm of the reseated root was immersed in a culture chamber containing a Tripticase Soy Broth with a phenol red indicator. The coronal access of each specimen was inoculated every 72 hours with suspension of Proteus vulgaris. The culture media were observed every 24hours for color change indicating bacterial contamination. The specimens were observed for 4weeks. The remaining 70 teeth were submitted to a dye penetration test. The canals of all teeth were first sealed with AH26 and obturated using an Obtura II system. Root resection, root end preparation and retrograde filling was performed as above. All specimens were suspended in 2% methylene blue dye for 72 hours before being ion gitudinally split. The degree of dye penetration was then measured using a stereomicroscope at 10 magnification and evaluated. The results were as floows : 1. In the bacterial penetration, the degree of leakage was the lowest in the Super-EBA, followed by, in ascending order, ZOE, Chelon-Silver IRM and ZPC. The amalgam showed highest bacterial leakage of all(p<0.01). 2. In the dye penetration, the degree of microleakage was the lowest in the Chelon-Silver and Super-EBA, followed by, in ascending order, IRM, ZPC. The ZOE and amalgam showed the highest microleakage of all (p<0.05). These results suggested that the eugenol based cement, Super-EBA, have excellent sealing ability as a retrograde filling material.

  • PDF

Monitoring the Differentiation and Migration Patterns of Neural Cells Derived from Human Embryonic Stem Cells Using a Microfluidic Culture System

  • Lee, Nayeon;Park, Jae Woo;Kim, Hyung Joon;Yeon, Ju Hun;Kwon, Jihye;Ko, Jung Jae;Oh, Seung-Hun;Kim, Hyun Sook;Kim, Aeri;Han, Baek Soo;Lee, Sang Chul;Jeon, Noo Li;Song, Jihwan
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.497-502
    • /
    • 2014
  • Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

Influence of Exposure to Extremely Low Frequency Magnetic Field on Neuroendocrine Cells and Hormones in Stomach of Rats

  • Hong, Min-Eui;Yoon, Kyu-Hyun;Jung, Yoon-Yang;Lee, Tae-Jin;Park, Eon-Sub;Sohn, Uy-Dong;Jeong, Ji-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.137-142
    • /
    • 2011
  • Extremely low frequency magnetic fields (ELF-MF) have the ability to produce a variety of behavioral and physiological changes in animals. The stomach, as the most sensitive part of the neuroendocrine organ of the gastrointestinal tract, is crucial for the initiation of a full stress response against all harmful stress. Thus, the purpose of this study was to examine whether ELF-MF stimuli induce changes in the activity of neuroendocrine cells, considering their involvement in endocrine or paracrine effect on surrounding cells. The exposure to ELF-MF (durations of 24 h and 1 or 2 weeks, 60 Hz frequency, 0.1 mT intensity) altered the distribution and occurrence of gastrin, ghrelin and somatostatinpositive endocrine cells in the stomach of rats. The change, however, in the secretion of those hormones into blood from endocrine cells did not appear significantly with ELF-MF exposure. Comparing with sham control, ELF-MF exposure for 1 and 2 week induced an increase in $BaSO_4$ suspension propelling ratio of gastrointestinal tract, indicating that ELF-MF affects gastrointestinal motility. Our study revealed that ELF-MF exposure might influence the activity of endocrine cells, an important element of the intrinsic regulatory system in the digestive tract. The pathophysiological character of these changes and the mechanism responsible for neuroendocrine cell are still unclear and require further studies.

The Effects of Sucrose and Inoculum Size on the Production of hGM-CSF from Plant Cell Culture (식물세포배양에서 당과 식물세포의 농도가 hGM-CSF의 생산에 미치는 영향)

  • 이재화;김난선;권태호;박승문;장용석
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.376-380
    • /
    • 2001
  • The human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was produced from cell suspension culture of transgenic tobacco which was transformed by using Agrobacterium harboring the hGM-CSF gene. To improve the production of hGM-CSF in batch culture system, the effects of initial sucrose concentration and inoculum size were investigated. The results show that the hGM-CSF production was not affected by small inoculum size in medium containing either low or high concentration of sucrose. However, the production of hGM-CSF was increased under increasing of the inoculum sizes and sucrose concentration. Under the combination of inoculum and sucrose concentration, the maximum hGM-CSF production of 720 $\mu$g/L was obtained at 90 g/L of initial sucrose concentration and 110 g/L of inoculum size.

  • PDF

Extrapolation of extreme traffic load effects on bridges based on long-term SHM data

  • Xia, Y.X.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.995-1015
    • /
    • 2016
  • In the design and condition assessment of bridges, it is usually necessary to take into consideration the extreme conditions which are not expected to occur within a short time period and thus require an extrapolation from observations of limited duration. Long-term structural health monitoring (SHM) provides a rich database to evaluate the extreme conditions. This paper focuses on the extrapolation of extreme traffic load effects on bridges using long-term monitoring data of structural strain. The suspension Tsing Ma Bridge (TMB), which carries both highway and railway traffic and is instrumented with a long-term SHM system, is taken as a testbed for the present study. Two popular extreme value extrapolation methods: the block maxima approach and the peaks-over-threshold approach, are employed to extrapolate the extreme stresses induced by highway traffic and railway traffic, respectively. Characteristic values of the extreme stresses with a return period of 120 years (the design life of the bridge) obtained by the two methods are compared. It is found that the extrapolated extreme stresses are robust to the extrapolation technique. It may owe to the richness and good quality of the long-term strain data acquired. These characteristic extremes are also compared with the design values and found to be much smaller than the design values, indicating conservative design values of traffic loading and a safe traffic-loading condition of the bridge. The results of this study can be used as a reference for the design and condition assessment of similar bridges carrying heavy traffic, analogous to the TMB.

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.

Preparation of Corncob Grits as a Carrier for Immobilizing Yeast Cells for Ethanol Production

  • Lee, Sang-Eun;Lee, Choon Geun;Kang, Do Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1673-1680
    • /
    • 2012
  • In this study, DEAE-corncobs [delignified corncob grits derivatized with 2-(diethylamino)ethyl chloride hydrochloride ($DEAE{\cdot}HCl$)] were prepared as a carrier to immobilize yeast (Saccharomyces cerevisiae) for ethanol production. The immobilized yeast cell reactor produced ethanol under optimized $DEAE{\cdot}HCl$ derivatization and adsorption conditions between yeast cells and the DEAE-corncobs. When delignified corncob grit (3.0 g) was derivatized with 0.5M $DEAE{\cdot}HCl$, the yeast cell suspension ($OD_{600}$ = 3.0) was adsorbed at >90% of the initial cell $OD_{600}$. This amount of adsorbed yeast cells was estimated to be 5.36 mg-dry cells/g-DEAE corncobs. The $Q_{max}$ (the maximum cell adsorption by the carrier) of the DEAE-corncobs was estimated to be 25.1 (mg/g), based on a Languir model biosorption isotherm experiment. When we conducted a batch culture with medium recycling using the immobilized yeast cells, the yeast cells on DEAE-corncobs produced ethanol gradually, according to glucose consumption, without cells detaching from the DEAE-corncobs. We observed under electron microscopy that the yeast cells grew on the surface and in the holes of the DEAE-corncobs. In a future study, DEAE-corncobs and the immobilized yeast cell reactor system will contribute to bioethanol production from biomass hydrolysates.