• Title/Summary/Keyword: Suspension of Performance

Search Result 659, Processing Time 0.022 seconds

Dynamic Performance Analysis of an Active Secondary Suspension for a Railway Vehicle (철도차량 능동이차현가장치의 동적 성능 해석)

  • Park, Joon-Hyuk;Shin, Yu-Jeong;Hur, Hun-Moo;You, Won-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.854-855
    • /
    • 2011
  • Active suspension technology of railway vehicles has received attention as the way to replace the current passive suspension. This paper deals with the dynamic performance of an active suspension system for a railway vehicle. To verify performance of an active suspension, the dynamic performance of the railway vehicle with active suspension system analyzed and compared with conventional suspension system by using the VI-rail program.

  • PDF

Investigation on mechanics performance of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.533-542
    • /
    • 2007
  • The cable-stayed-suspension hybrid bridge is a cooperative system of the cable-stayed bridge and suspension bridge, and takes some advantages and also makes up some deficiencies of both the two bridge systems, and therefore becomes strong in spanning. By taking the cable-stayed-suspension hybrid bridge, suspension bridge and cable-stayed bridge with main span of 1400 m as examples, the mechanics performance including the static and dynamic characteristics, the aerostatic and aerodynamic stability etc is investigated by 3D nonlinear analysis. The results show that as compared to the suspension bridge and cable-stayed bridge, the cable-stayed-suspension hybrid bridge has greater structural stiffness, less internal forces and better wind stability, and is favorable to be used in super long-span bridges.

Analysis for Performance of Semi-active suspension with Running condition and Specification of Variable Damper (주행조건 및 가변 댐퍼 사양에 따른 준능동형 현가시스템의 성능 분석)

  • Sohn In-Suk;Lee Nam-Jin;Kim Chul-Gun;Nam Hak-Gi
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.805-810
    • /
    • 2005
  • The main functions of suspension system of railway vehicle are isolating vibration from track irregularity to car-body for the Ride quality and keeping its stability with limitation of vehicle's movement. These two functions conflict with each other, then it is impossible to achieve both of performance with traditional passive suspension which has constant characteristics. So, to improve this situation the active suspension was suggested and in specially the semi-active suspension is noticed for its effectiveness on cost despite of its lower performance than full-active suspension. In this study the control logic made through LQG theory was designed with simplified vehicle model and variable damper model defined by $1^{st}$ order system, then the analysis of simulation results was done to understand influence on the performance of semi-active suspension with running conditions and response characteristics of variable damper.

  • PDF

A semi-active suspension controller adapting to road variation (노면 적응 반능동 현가장치)

  • 이동락;한기봉;이시복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.338-344
    • /
    • 1996
  • In this paper, a semi-active suspension adapting to road variation which also considers the frequency snesitivity of human is proposed. First, a road adapting controller composed of system identification and LQG control is designed. Using the extended least squares method, the road property is estimated by system identification as it varies, and the LQG controller considering the estimated road property and the frequency sensitivity of human is designed. Next, the semi-active suspension is made, which tracks the performance of the active suspension with the road adapting controller. Through numerical simulation, the performance of the proposed semi-active suspension is compared with that of a non-adaptive semi-active suspension with frequency-shaped performance index. As a result, we see that the road adapting semi-active suspension has better performance.

  • PDF

Performance improvement of a vehicle suspension by sensitivity analysis (민간도해석에 의한 자동차 현가장치의 성능개선에 관한 연구)

  • Song, Chuck-Gee;Park, Ho;Oh, Jae-Eung;Yum, Sung-Ha
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1464-1473
    • /
    • 1990
  • Optimal design parameters are estimated from the sensitivity function and performance index variation. Suspension design modification for performance improvement and basic materials for practical applications are presented. The linear quarter model of a vehicle suspension is analyzed in order to represent the utilities of sensitivity analysis, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. As an investigation results of sensitivity function for the vibrational amplitude of sprung mass to road profile input, it is shown that the most sensitive parameters are the suspension damping and the suspension stiffness. In order to identify the effects of these two parameters to the performance of suspension system, the performance index variation according to the changes of parameters is considered and then optimal design parameters are determined. It is verified that the system response is improved noticeably in the both of frequency and time domain after the design modification with the optimal parameters.

A Study of Hybrid Control of Active Suspension System (능동 현가계의 합성 제어에 관한 연구)

  • 김효준;박혁성;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.345-350
    • /
    • 1996
  • The suspension system plays an important role in vehicle performance. To improve suspension characteristics related to riding comfort and handling stability simultaneously, active suspension system is developed. In this study, a hybrid control scheme is proposed, the idea of which is that the sliding mode control is applied to nonlinear hydraulic system and the skyhook control is applied for controlling the motion of the suspension system. The performance of the proposed control method is evaluated by simulation and experiment of a half car active suspension system.

  • PDF

Damping performance Analysis for an Electronically Contralled Shock Absorber (연속 가변형 충격흡수기의 감쇠성능 해석)

  • 박재우;이동락;백운경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.192-201
    • /
    • 2001
  • Analyzing internal structure, flow rate and dynamic behavior characteristics of electronically controlled shock absorber, damping performance limit is identified to comprise the two reciprocal characteristics of ride comfort and handling safety. Regardless of its lower performance than the active suspension control system, the semi-active suspension control system has been taking interest because of its absolutely higher performance than passive suspension system. Since the pervious studies have been concentrated mostly on analytic aspect and survey on the internal structure of the shock absorber remain insufficient, the main discourse of this paper is focused on analyzing the nonlinear shock absorber which varies the damping force of semi-active suspension system and the dynamic characteristics of the solenoid valve, a sort of pressure valve, and proposing the design factors of importance.

  • PDF

Optimum Design of Suspension Systems Using a Genetic Algorithm (유전 알고리즘을 이용한 현가장치의 기구학적 최적설계)

  • 이덕희;김태수;김재정
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.138-147
    • /
    • 2000
  • Vehicle suspension systems are parts which effect performances of a vehicle such as ride quality, handing characteristics, straight performance and steering effort etc. Kinematic design is a decision of joints` position for straight performance and steering effort. But, when vehicle is rebounding and bumping, chang of joints` displacement is nonlinear and a surmise of straight performance and steering effort at that joints` position is difficult. So design of suspension systems is done through a inefficient method of tried-and-error depending on designer`s experience. In this paper, kinematic design of suspension systems was done through the optimal design using a genetic algorithm. For this optimal design, the function for quantification of straight performance and steering effort was made, and the kinematic design method of suspension systems having this function as the objective function was suggested.

  • PDF

Study of seismic performance of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun;Yu, Zhou-Jun
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1203-1221
    • /
    • 2015
  • By taking a cable-stayed-suspension hybrid bridge with main span of 1400 m as example, seismic response of the bridge under the horizontal and vertical seismic excitations is investigated numerically by response spectrum analysis and time history analysis, its seismic performance is discussed and compared to the cable-stayed bridge and suspension bridge with the same main span, and considering the aspect of seismic performance, the feasibility of using cable-stayed-suspension hybrid bridge in super long-span bridges is discussed. Under the horizontal seismic action, the effects of structural design parameters including the cable sag to span ratio, the suspension to span ratio, the side span length, the subsidiary piers in side spans, the girder supporting system and the deck form etc on the seismic performance of the bridge are investigated by response spectrum analysis, and the favorable values of these design parameters are proposed.

Performance Evaluation of a Full Vehicle with Semi-active MR Suspension at Different Tire Pressure (타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가)

  • Kim, Hyung-Seob;Seong, Min-Sang;Choi, Seung-Bok;Kwon, Oh-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1067-1073
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.